
ar
X

iv
:1

40
9.

84
64

v1
 [

cs
.C

C
]

 3
0

Se
p

20
14

Model Counting for Formulas of

Bounded Clique-Width⋆

Friedrich Slivovsky and Stefan Szeider

Institute of Information Systems, Vienna University of Technology, Vienna, Austria
fs@kr.tuwien.ac.at,stefan@szeider.net

Abstract. We show that #SAT is polynomial-time tractable for classes
of CNF formulas whose incidence graphs have bounded symmetric
clique-width (or bounded clique-width, or bounded rank-width). This
result strictly generalizes polynomial-time tractability results for classes
of formulas with signed incidence graphs of bounded clique-width and
classes of formulas with incidence graphs of bounded modular treewidth,
which were the most general results of this kind known so far.

1 Introduction

Propositional model counting (#SAT) is the problem of computing the number
of satisfying truth assignments for a given CNF formula. It is a well-studied
problem with applications in Artificial Intelligence, such as probabilistic in-
ference [1,16]. It is also a notoriously hard problem: #SAT is #P-complete
in general [18] and remains #P-hard even for monotone 2CNF formulas and
Horn 2CNF formulas [14]. It is NP-hard to approximate the number of sat-

isfying truth assignments of a formula with n variables to within 2n
1−ε

for
any ε > 0. As in the exact case, this hardness result even holds for mono-
tone 2CNF formulas and Horn 2CNF formulas [14]. While these syntactic
restrictions do not make the problem easier, #SAT becomes tractable under
certain structural restrictions [6,8,9,11,12,13,15,17]. Structural restriction are
obtained by bounding parameters of (hyper)graphs associated with formulas.
We extend this line of research and study #SAT for classes of formulas whose
incidence graphs (that is, the bipartite graph whose vertex classes consist of
variables and clauses, with variables adjacent to clauses they occur in) have
bounded symmetric clique-width [4]. Symmetric clique-width is a parameter
that is closely related to clique-width, rank-width, and Boolean-width: a class
of graphs has bounded symmetric clique-width iff it has bounded clique-width
iff it has bounded rank-width iff it has bounded Boolean-width. For a graph
class C, let #SAT(C) be the restriction of #SAT to instances F with incidence
graph I(F) ∈ C. We prove:

Theorem 1. #SAT(C) is polynomial-time tractable for any graph class C of
bounded symmetric clique-width.

⋆ This research was supported by the ERC (COMPLEX REASON, 239962).

http://arxiv.org/abs/1409.8464v1

This result generalizes polynomial-time tractability results for classes of formulas
with signed incidence graphs of bounded clique-width [6] and classes of formu-
las with incidence graphs of bounded modular treewidth [13]. The situation is
illustrated in Figure 1 (for a survey of results for width-based parameters, see
[12,13]). Our result is obtained through a combination of dynamic program-

symmetric incidence clique-width [this paper]

modular incidence treewidth [13]signed incidence clique-width [6]

incidence treewidth [6,15,17]

primal treewidth [15]

Fig. 1. A hierarchy of structural parameters. An arc from a parameter p to a parameter
q reads as “for any class of formulas, q is bounded whenever p is bounded.” Bold
type is used to indicate parameters that render #SAT polynomial-time tractable when
bounded by a constant.

ming on a decomposition tree with the representation of truth assignments by
projections (i.e., sets of clauses satisfied by these assignments). This extends
the techniques used to prove polynomial-tractability of #SAT for classes of for-
mulas with incidence graphs of bounded modular treewidth [13]; there, partial
assignments are partitioned into equivalence classes by an equivalence relation
roughly defined as follows: two assignments are equivalent whenever they sat-
isfy the same set of clauses of a certain formula induced by a subtree of the
decomposition. To make bottom-up dynamic programming work, it is enough
to record the number of assignments in each equivalence class. This approach
does not carry over to the case of bounded symmetric clique-width for principal
reasons: the number of equivalence classes of such a relation can be exponential
in the size of the (sub)formula.

To deal with this, our algorithm uses the technique of taking into account
an “expectation from the outside” [2,7,8]. The underlying idea is that the in-
formation one has to record for any particular partial solution can be reduced
significantly if one includes an “expectation” about what this partial solution
will be combined with to form a complete solution. This trick allows us to bound
the number of records required for dynamic programming by a polynomial in
the number of clauses of the input formula.

For all parameters considered in Figure 1, propositional model counting is
polynomial-time tractable if the parameter is bounded by a constant, but some of
them even admit so-called FPT algorithms. The runtime of an FPT algorithm is
bounded by a function of the form f(k)p(l), where f is an arbitrary computable
function and p is a polynomial with order independent of the parameter k. As
we will see, the order of the polynomial bounding the runtime in Theorem 1
is dependent on the parameter. One may wonder whether this can be avoided,
that is, whether the problem admits an FPT algorithm. The following result
shows that this is not possible, subject to an assumption from parameterized
complexity.

Theorem 2 ([12]). SAT, parameterized by the symmetric clique-width of the
incidence graph of the input formula, is W[1]-hard.

To be precise, the result proven in [12] is stated in terms of clique-width. How-
ever, since the clique-width of a graph is at most twice its symmetric clique-width
(see [4]), the result carries over to symmetric clique-width.

2 Preliminaries

Let f : X → Y be a function andX ′ ⊆ X . We let f(X ′) = { f(x) ∈ Y : x ∈ X ′ }.
Let X∗ and Y ∗ be sets, and let g : X∗ → Y ∗ be a function with g(x) = f(x)
for all x ∈ X ∩ X∗. Then the function f ∪ g : X ∪X∗ → Y ∪ Y ∗ is defined as
(f ∪ g)(x) = f(x) if x ∈ X and (f ∪ g)(x) = g(x) if x ∈ X∗ \X .

Graphs. The graphs considered in this paper are loopless, simple, and undi-
rected. If G is a graph and v is a vertex of G, we let N(v) denote the set of
all neighbors of v in G. For a tree T we write L(T) to denote the set of leaves
of T . Let C be a class of graphs and let f be a mapping (invariant under iso-
morphisms) that associates each graph G with a non-negative real number. We
say C has bounded f if there is a c such that f(G) ≤ c for every G ∈ C.

Formulas. We assume an infinite supply of propositional variables. A literal is
a variable x or a negated variable x; we put var(x) = var(x) = x; if y = x is a
literal, then we write y = x. For a set S of literals we write S = { x : x ∈ S }; S
is tautological if S ∩ S 6= ∅. A clause is a finite non-tautological set of literals.
A finite set of clauses is a CNF formula (or formula, for short). The length
of a formula F is given by

∑
C∈F |C|. A variable x occurs in a clause C if

x ∈ C ∪ C. We let var(C) denote the set of variables that occur in C. A
variable x occurs in a formula F if it occurs in at least one of its clauses, and
we let var(F) =

⋃
C∈F var(C). If F is a formula and X a set of variables, we

let F |X = {C ∈ F : X ⊆ var(C) }. The incidence graph of a formula F is the
bipartite graph I(F) with vertex set var(F) ∪ F and edge set {Cx : C ∈ F and
x ∈ var(C) }.

Let F be a formula. A truth assignment is a mapping τ : X → {0, 1} defined
on some set of variables X ⊆ var(F). We call τ total if X = var(F) and partial

otherwise. For x ∈ X , we define τ(x) = 1− τ(x). A truth assignment τ satisfies
a clause C if C contains some literal ℓ with τ(ℓ) = 1. If τ satisfies all clauses
of F , then τ satisfies F ; in that case we call F satisfiable. The Satisfiability
(SAT) problem is that of testing whether a given formula is satisfiable. The
propositional model counting (#SAT) problem is a generalization of SAT that
asks for the number of satisfying total truth assignments of a given formula. For
a graph class C, we let #SAT(C) be the restriction of #SAT to instances F with
I(F) ∈ C.

Decomposition Trees. We review decomposition trees following the presentation
in [3]. Let G = (V,E) be a graph. A decomposition tree for G is a pair (T, δ),
where T is a rooted binary tree and δ : L(T) → V is a bijection. For a subset
X ⊆ V let X = V \ X . We associate every edge e ∈ E(T) with a bipartition
Pe of V obtained as follows. If T1 and T2 are the components obtained by
removing e from T , we let Pe = (L(T1), L(T2)). Note that L(T2) = X for
X = L(T1). A function f : 2V → R is symmetric if f(X) = f(X) for all X ⊆ V .
Let f : 2V → R be a symmetric function. The f -width of (T, δ) is the maximum
of f(X) = f(X) taken over the bipartitions Pe = (X,X) for all e ∈ E(T). The
f -width of G is the minimum of the f -widths of the decomposition trees of G.

Let A(G) stand for the adjacency matrix of G, that is, the V × V matrix
A(G) = (avw)v∈V,w∈V such that avw = 1 if vw ∈ E and avw = 0 otherwise.
For X,Y ⊆ V , let A(G)[X,Y] denote the X × Y submatrix (avw)v∈X,w∈Y . The
cut-rank function ρG : 2V → R of G is defined as

ρG(X) = rank(A(G)[X,V \X]),

where rank is the rank function of matrices over Z2. The row and column ranks
of any matrix are equivalent, so this function is symmetric. The rank-width of
a decomposition tree (T, δ) of G, denoted rankw (T, δ), is the ρG-width of (T, δ),
and the rank-width of G, denoted rankw(G), is the ρG-width of G.

Let X be a proper nonempty subset of V . We define an equivalence rela-
tion ≡X on X as

x ≡X y iff, for every z ∈ V \X , xz ∈ E ⇔ yz ∈ E.

The index of X in G is the cardinality of X/≡X , that is, the number of equiv-
alence classes of ≡X . We let indexG : 2V → R be the function that maps each
proper nonempty subset X of V to its index in G. We now define the function
ιG : 2V → R as

ιG(X) = max(indexG(X), indexG(V \X)).

This function is trivially symmetric. The index of a decomposition tree
(T, δ) of G, denoted index (T, δ), is the ιG-width of (T, δ). The symmetric
clique-width [4] of G, denoted scw(G), is the ιG-width of G.

Symmetric clique-width and rank-width are closely related graph parame-
ters. In fact, the index of a decomposition tree can be bounded in terms of its
rank-width.

Lemma 3. For every graph G and decomposition tree (T, δ) of G, rankw(T, δ) ≤
index (T, δ) ≤ 2rankw(T,δ).

Proof. Let G = (V,E) be a graph and X be a nonempty proper subset of V .
For every pair of vertices x, y ∈ X the rows of A(G)[X,V \ X] with indices x
and y are identical if and only if x ≡X y. So indexG(X) is precisely the number
of distinct rows of A(G)[X,V \ X], which is an upper bound on the rank of
A(G)[X,V \X] over Z2. Symmetrically, indexG(V \X) is the number of distinct
columns of A(G)[X,V \ X], which is also an upper bound on the rank. So
ρG(X) ≤ ιG(X), which proves the left inequality. The rank of A(G)[X,V \X]
is the cardinality of a basis for the matrix’s row (column) space. That is, each
of its row (column) vectors can be represented as a linear combination of ρG(X)
row (column) vectors. Over Z2, any linear combination can be obtained using
only 0 and 1 as coefficients. Accordingly, there can be at most 2ρ(X) distinct
rows (columns) in A(G)[X,V \X]. So ιG(X) ≤ 2ρG(X), and the right inequality
follows. ⊓⊔

Corollary 4. For every graph G, rankw(G) ≤ scw(G) ≤ 2rankw(G).

Runtime bounds for the dynamic programming algorithm presented below are
more naturally stated in terms the index of the underlying decomposition tree
than in terms of its rank-width. However, to the best of our knowledge, there
is no polynomial-time algorithm for computing decomposition trees of minimum
index directly – instead, we will use the following result to compute decomposi-
tion trees of minimum rank-width.

Theorem 5 ([5]). Let k ∈ N be a constant and n ≥ 2. For an n-vertex graph G,
we can output a decomposition tree of rank-width at most k or confirm that the
rank-width of G is larger than k in time O(n3).

Projections. Let F be a set of clauses andX a set of variables. For an assignment
σ ∈ 2X we write F (σ) to denote the set of clauses of F satisfied by σ, and
call F (σ) a projection of F . We write proj(F,X) = {F (σ) : σ ∈ 2X } for the set
of projections of F with respect to a set X of variables.

Proposition 6. Let F be a formula with m clauses and let X ⊆ var(F) be a set
of variables. We have |proj(F |X , X)| ≤ m + 1. Moreover, the set proj(F |X , X)
can be computed in time polynomial in l, where l is the length of F .

Proof. Let ∼X be the relation on clauses defined as C ∼X C′ if { ℓ ∈ C : var(ℓ) ∈
X } = { ℓ ∈ C′ : var(ℓ) ∈ X }. Clearly ∼X is an equivalence relation. Let
C1, . . . , Cl be the equivalence classes of ∼X on F |X . Recall that every clause C
in F |X contains all variables in X . As a consequence, an assignment τ ∈ 2X

either satisfies all clauses in F |X or it satisfies all clauses in F |X except those in a
unique class Ci for i ∈ {1, . . . , l}, in which case F |X(τ) = F |X\Ci. Since F |X ⊆ F
we get l ≤ m, and thus |proj(F |X , X)| ≤ m + 1. Computing proj(F |X , X) boils
down to computing C1, . . . , Cl and in turn F |X \ Ci for each i ∈ {1, . . . , l}, which
can be done in time polynomial in the length of F . The set F |X is contained in
proj(F |X , X) if and only if l < 2|X|, which can be checked in polynomial time as
well. ⊓⊔

3 An Algorithm for #SAT

In this section, we will describe an algorithm for #SAT via dynamic program-
ming on a decomposition tree. To simplify the statements of intermediate results,
we fix a formula F with |F | = m clauses and a decomposition tree (T, δ) of I(F)
with index (T, δ) = k. For a node z ∈ V (T), let Tz denote the maximal sub-
tree of T rooted at z. We write varz for the set of variables var(F) ∩ δ(L(Tz))
and Fz for the set of clauses F ∩ δ(L(Tz)). Moreover, we let Fz = F \ Fz and
varz = var(F) \ varz.

Our algorithm combines techniques from [13] with dynamic programming
using “expectations” [2,7,8]. We briefly describe the information maintained for
each node z ∈ V (T) of the decomposition. Classes of truth assignments σ ∈ 2varz

will be represented by two sets of clauses. The first set (typically denoted out)
corresponds to the projection Fz(σ), that is, the set of clauses outside the current
subtree that is satisfied by σ. The second set is a projection Fz(τ) for some
τ ∈ 2varz so that the combined assignment σ ∪ τ satisfies Fz . This set of clauses
(typically denoted in) is “expected” to be satisfied from outside the current
subtree by an “incoming” assignment. Adopting the terminology of [8], we call
these pairs of sets shapes.

Definition 7 (Shape). Let z ∈ V (T), let outz ⊆ Fz, and let inz ⊆ Fz. We
call the pair (outz , inz) a shape (for z), and say an assignment τ ∈ 2varz is of
shape (outz, inz) if it satisfies the following conditions.

(i) Fz(τ) = outz.

(ii) For each clause C ∈ Fz, the assignment τ satisfies C or C ∈ inz.

If outz ∈ proj(Fz , varz) and inz ∈ proj(Fz , varz) then the shape (outz, inz) is
proper. We denote the set of shapes for z ∈ V (T) by shapes(z) and write Nz(s)
to denote the set of assignments in 2varz of shape s ∈ shapes(z). Moreover, we
let nz(s) = |Nz(s)|.

Note that an assignment can have multiple shapes, so shapes do not partition
assignments into equivalence classes.

Lemma 8. A truth assignment τ ∈ 2var(F) satisfies F if and only if it has
shape (∅, ∅). Moreover, the shape (∅, ∅) is proper.

Proof. Observe that varr = var(F), and let τ ∈ 2varr . Suppose τ satisfies F .
Since Fr is empty, we immediately get Fr(τ) = ∅, so τ satisfies condition (i).
Moreover τ satisfies every clause of F = Fr, so condition (ii) is satisfied as
well. For the right to left direction, suppose τ has shape (∅, ∅). It follows from
condition (ii) that τ must satisfy Fr = F . To see that (∅, ∅) is proper note that
Fr(σ) = ∅ for any σ ∈ 2varr , and that 2varr contains only the empty function
ǫ : ∅ → {0, 1} with Fr(ǫ) = ∅. ⊓⊔

This tells us that nr((∅, ∅)) is equal to the number of satisfying truth assignments
of F . Let x, y, z ∈ V (T) such that x and y are the children of z, and let sx, sy, sz

be shapes for x, y, z, respectively. The assignments in Nx(sx) and Ny(sy) con-
tribute to Nz(sz) if certain conditions are met. These are captured by the
following definition.

Definition 9. Let x, y, z ∈ V (T) such that x and y are the children of z. We
say two shapes (outx, inx) ∈ shapes(x) and (outy, iny) ∈ shapes(y) generate the
shape (outz, inz) ∈ shapes(z) whenever the following conditions are satisfied.

(1) outz = (outx ∪ outy) ∩ Fz

(2) inx = (inz ∪ outy) ∩ Fx

(3) iny = (inz ∪ outx) ∩ Fy

We write generatorsz(s) for the set of pairs in shapes(x)×shapes(y) that generate
s ∈ shapes(z).

Lemma 10. Let x, y, z ∈ V (T) such that x and y are the children of z,
and let τx ∈ 2varx be of shape (outx, inx) ∈ shapes(x) and τy ∈ 2vary be of
shape (outy, iny) ∈ shapes(y). If (outx, inx) and (outy, iny) generate the shape
(outz, inz) ∈ shapes(z), then τ = τx ∪ τy is of shape (outz, inz). Moreover, if
(outz, inz) is proper then (outx, inx) and (outy, iny) are proper.

Proof. Suppose (outx, inx) and (outy, iny) generate (outz, inz). To see that τ
satisfies condition (i), note that a clause is satisfied by τ if and only if it is satisfied
by τx or τy, so Fz(τz) = Fz(τx) ∪ Fz(τy) = (outx ∩ Fz) ∪ (outy ∩ Fz) = outz.
For condition (ii), let C ∈ Fz = Fx ∪ Fy. Without loss of generality assume
that C ∈ Fx. Suppose τ does not satisfy C. Then τx does not satisfy C, so we
must have C ∈ inx because τx is of shape (outx, inx). But τy does not satisfy C
either, so C /∈ outy. Combining these statements, we get C ∈ inx\outy. Because
(outx, inx) and (outy, iny) generate (outz , inz) we have inx = (inz ∪ outy) ∩ Fx

by condition (2). It follows that C ∈ inz .
The assignments τx and τy are of shapes (outx, inx) and (outy, iny) so outx ∈

proj(Fx, varx) and outy ∈ proj(Fy, vary) by condition (i). Suppose (outz, inz) is
proper. Then there is an assignment ρ ∈ 2varz such that inz = Fz(ρ). The shapes
(outx, inx) and (outy, iny) generate (outz, inz), so inx = (inz∪outy)∩Fx. Thus
inx = (Fz(ρ)∪Fy(τy))∩Fx. Equivalently, inx = (Fz(ρ)∩Fx)∪(Fy(τy)∩Fx). Since
Fx ⊆ Fz and Fx ⊆ Fy this can be rewritten once more as inx = Fx(ρ) ∪ Fx(τy).
The domains varz of ρ and vary of τy are disjoint, so Fx(ρ)∪Fx(τy) = Fx(ρ∪τy).
Because varz∪vary = varx it follows that inx ∈ proj(Fx, varx) and so (outx, inx)
is proper. A symmetric argument shows that (outy, iny) is proper. ⊓⊔

Corollary 11. Let x, y, z ∈ V (T) such that x and y are the children of z in T ,
and let s ∈ shapes(z) be proper. Suppose sx ∈ shapes(x) and sy ∈ shapes(y)
generate s and both Nx(sx) and Ny(sy) are nonempty. Then sx and sy are
proper.

Lemma 12. Let x, y, z ∈ V (T) such that x and y are the children of z, and
let τ ∈ 2varz be a truth assignment of shape (outz, inz) ∈ shapes(z). Let

τx = τ |varx and τy = τ |vary . There are unique shapes (outx, inx) ∈ shapes(x)
and (outy, iny) ∈ shapes(y) generating (outz, inz) such that τx has shape
(outx, inx) and τy has shape (outy, iny).

Proof. We define outx = Fx(τx), outy = Fy(τy) and let inx = (inz∩Fx)∪Fx(τy),
iny = (inz ∩ Fy) ∪ Fy(τx). We prove that (outx, inx) and (outy, iny) generate
(outz, inz). Since τ has shape (outz , inz) by condition (i) we have outz = Fz(τ).
We further have Fz(τ) = Fz(τx) ∪ Fz(τy) by choice of τx and τy . Because
Fz ⊆ Fx and Fz ⊆ Fy we get Fz(τ) = (Fx(τx) ∩ Fz) ∪ (Fy(τy) ∩ Fz) and thus
Fz(τ) = (outx∪outy)∩Fz . That is, condition (1) is satisfied. From Fx ⊆ Fy and
Fy ⊆ Fx it follows that Fx(τy) = Fy(τy) ∩ Fx and Fy(τx) = Fx(τx) ∩ Fy. Thus
Fx(τy) = outy∩Fx and Fy(τx) = outx∩Fy by construction of outx and outy. By
inserting in the definitions of inx and iny we get inx = (inz ∩ Fx) ∪ (outy ∩ Fx)
and iny = (inz ∩ Fy) ∪ (outx ∩ Fy), so conditions (2) and (3) are satisfied. We
conclude that (outx, inx) and (outy, iny) generate (outz , inz).

We proceed to showing that τx is of shape (outx, inx). Condition (i) is
satisfied by construction. To see that condition (ii) holds, pick any C ∈ Fx not
satisfied by τx. If τy satisfies C, then C ∈ Fx(τy) ⊆ inx. Otherwise, τ = τx ∪ τy
does not satisfy C. Since τ of shape (outz, inz) this implies C ∈ inz. Again
we get C ∈ inx as inz ∩ Fx ⊆ inx. The proof that τy has shape (outy, iny) is
symmetric.

To show uniqueness, let (out ′x, in
′
x) ∈ shapes(x) and (out ′y, in

′
y) ∈ shapes(y)

generate (outz , inz), and suppose τx has shape (out ′x, in
′
x) and τy has shape

(out ′y, in
′
y). From condition (i) we immediately get out ′x = Fx(τx) = outx and

out ′y = Fy(τy) = outy. Since the pairs (out ′x, in
′
x),(out

′
y, in

′
y) and (outx, inx),

(outy, iny) both generate (outz , inz), it follows from condition (2) that in ′
x = inx

and in ′
y = iny. ⊓⊔

Lemma 13. Let x, y, z ∈ V (T) such that x and y are the children of z in T ,
and let s ∈ shapes(z). The following equality holds.

nz(s) =
∑

(sx,sy)∈generatorsz(s)

nx(sx) ny(sy) (1)

Proof. Let M(s) =
⋃

(sx,sy)∈generatorsz(s)
Nx(sx) × Ny(sy). We first show that

the function f : τ 7→ (τ |varx , τ |vary) is a bijection from Nz(s) to M(s). By
Lemma 12 for every τ ∈ Nz(s) there is a pair (sx, sy) ∈ generatorsz(s) such that
τ |varx ∈ Nx(sx) and τ |vary ∈ Ny(sy). So f is into. By Lemma 10, for every
pair of assignments τx ∈ Nx(sx), τy ∈ Ny(sy) with (sx, sy) ∈ generatorsz(s) the
assignment τx ∪ τy is in Nz(s). Hence f is surjective. It is easy to see that f is
injective, so f is indeed a bijection.

We prove that |M(s)| is equivalent to the right hand side of Equality 1.
Since |Nx(sx)×Ny(sy)| = nx(sx) ny(sy) for every pair (sx, sy) ∈ generatorsz(s),
we only have to show that the sets Nx(sx) × Ny(sy) and Nx(s

′
x) × Ny(s

′
y) are

disjoint for distinct pairs (sx, sy), (s
′
x, s

′
y) ∈ generatorsz(s). Let (sx, sy), (s

′
x, s

′
y) ∈

generatorsz(s) and suppose (Nx(sx)×Ny(sy))∩ (Nx(s
′
x)×Ny(s

′
y)) is nonempty.

Pick any (τx, τy) ∈ (Nx(sx) × Ny(sy)) ∩ (Nx(s
′
x) × Ny(s

′
y)). The function f

is a bijection, so τx ∪ τy ∈ Nz(s). By Lemma 12 there is at most one pair
(s′′x, s

′′
y) ∈ generatorsz(s) of shapes such that τx ∈ Nx(s

′′
x) and τy ∈ Ny(s

′′
y), so

(sx, sy) = (s′′x, s
′′
y) = (s′x, s

′
y). ⊓⊔

Corollary 14. Let x, y, z ∈ V (T) such that x and y are the children of z in T ,
and let s ∈ shapes(z) be proper. Let P = { (sx, sy) ∈ generatorsz(s) : sx and sy
are proper }. The following equality holds.

nz(s) =
∑

(sx,sy)∈P

nx(sx) ny(sy) (2)

Proof. By Corollary 11 the product nx(sx)ny(sy) is nonzero only if sx and sy
are proper, for any pair (sx, sy) ∈ generatorsz(s). In combination with (1) this
implies (2). ⊓⊔

Corollary 14 in combination with Lemma 8 implies that, for each z ∈ V (T), it is
enough to compute the values nz(s) for proper shapes s ∈ shapes(z). To turn this
insight into a polynomial time dynamic programming algorithm, we still have
to show that the number of proper shapes in shapes(z) can be polynomially
bounded, and that the set of such shapes can be computed in polynomial time.
We will achieve this by specifying a subset of shapes(z) for each z ∈ V (T) that
contains all proper shapes and can be computed in polynomial time.

We define families Xz and Xz of sets of variables for each node z ∈ V (T),
as follows.

Xz = {X ⊆ varz : ∃C ∈ Fz such that X = varz ∩ var(C) }

Xz = {X ⊆ varz : ∃C ∈ Fz such that X = varz ∩ var(C) }

The next lemma follows from the definition of a decomposition tree’s index.

Lemma 15. For every node z ∈ V (T), max(|Xz |, |Xz|) ≤ k.

Let z ∈ V (T) and let f be a function with domain Xz that maps every set X to
some projection f(X) ∈ proj(Fz |X , X). We denote the set of such functions by
outfunctions(z). Symmetrically, we let infunctions(z) denote the set of functions g
that map every set Y ∈ Xz to some projection g(Y) ∈ proj(Fz |Y , Y).

Lemma 16. For every z ∈ V (T), |outfunctions(z)| ≤ (m + 1)k as well as
|infunctions(z)| ≤ (m+ 1)k.

Proof. By Proposition 6 that the cardinality of proj(Fz |X , X) is bounded bym+1
for every X ∈ Xz . In combination with Lemma 15 this yields |outfunctions(z)| ≤
(m+ 1)k. The proof of |infunctions(z)| ≤ (m+ 1)k is symmetric. ⊓⊔

Let union(f) denote
⋃

X∈dom(f) f(X), where dom(f) is the domain of f . We

define the set of restricted shapes for z ∈ V (T) as follows.

rshapes(z) = { (out , in) ∈ shapes(z) : ∃f ∈ outfunctions(z) s.t. out = union(f)

∧∃g ∈ infunctions(z) s.t. in = union(g) }

Every pair (f, g) ∈ outfunctions(z)× infunctions(z) uniquely determines a shape
in rshapes(z). Accordingly, Lemma 16 allows us to bound the cardinality of
rshapes(z) as follows.

Corollary 17. For any z ∈ V (T), |rshapes(z)| ≤ (m+ 1)2k.

Lemma 18. Let z ∈ V (T) and let s ∈ shapes(z) be proper. Then s ∈ rshapes(z).

Proof. Let s = (out , in). We show that there are functions f ∈ outfunctions(z)
and g ∈ infunctions(z) such that out = union(f) and in = union(g). Because s
is proper we have out ∈ proj(Fz , varz) and in ∈ proj(Fz , varz), so there must be
truth assignments σ ∈ 2varz and τ ∈ 2varz such that out = Fz(σ) and in = Fz(τ).
We define f as follows. For each X ∈ Xz we let f(X) = Fz|X(σ|X). The
assignment σ is defined on X ⊆ varz, so σ|X ∈ 2X and f(X) ∈ proj(Fz |X , X).
That is, f ∈ outfunctions(z). Symmetrically, we let g(X) = Fz |X(τ |X) for each
X ∈ Xz . Since τ is defined on X ⊆ varz we have τ |X ∈ 2X and g(X) ∈
proj(Fz |X , X), so g ∈ infunctions(z).

Pick an arbitrary C ∈ Fz and let X = var(C)∩ varz. We show that C ∈ out
if and only if C ∈ union(f). Suppose C ∈ out = Fz(σ). The assignment σ
has domain varz , so σ|X satisfies C because σ does. That is, C ∈ Fz(σ|X).
By choice of X we have C ∈ Fz|X , so C ∈ Fz(σ|X) ∩ Fz |X . Since Fz |X ⊆ Fz

we get Fz(σ|X) ∩ Fz|X = Fz |X(σ|X). So C ∈ Fz|X(σ|X) = f(X) and thus
C ∈ union(f). For the converse direction, suppose C ∈ union(f). That is,
C ∈ f(Y) = Fz |Y (σ|Y) for some Y ∈ Xz . Then in particular C ∈ Fz(σ) = out .
We conclude that union(f) = out . The proof of union(g) = in is symmetric. ⊓⊔

This shows that if we can determine the values nz(s) for every z ∈ V (T) and
s ∈ rshapes(z), we can determine the values nz(s

′) for every proper shape
s′ ∈ shapes(z). More specifically, as long as we can determine lower bounds
for nz(s) for every s ∈ rshapes(z) and the exact values of nz(s) for proper s, we
can compute the correct values for all proper shapes for every tree node.

Definition 19. For z ∈ V (T), a lower bounding function (for z) associates
with each s ∈ rshapes(z) a value lz(s) such that lz(s) ≤ nz(s) and lz(s) = nz(s)
if s is proper.

Let x, y, z ∈ V (T) such that x and y are the children of z. For each s ∈ shapes(z)
we write restricedgenz(s) = generatorsz(s) ∩ (rshapes(x) × rshapes(y)).

Lemma 20. Let x, y, z ∈ V (T) such that x and y are the children of z. Let lx
and ly be lower bounding functions for x and y. Let lz be the function defined
as follows. For each s ∈ rshapes(z), we let

lz(s) =
∑

(sx,sy)∈restricedgenz(s)

lx(sx) ly(sy). (3)

Then lz is a lower bounding function for z.

Proof. The inequality lz(s) ≤ nz(s) follows from rshapes(x) ⊆ shapes(x) and
rshapes(y) ⊆ shapes(y), in combination with equality (1) and the fact that lx and
ly are lower bounding functions for x and y. By Lemma 18 the set restricedgenz(s)
contains all pairs (sx, sy) ∈ generatorsz(s) such that sx and sy are proper. It
follows from Corollary 14 and lx(sx) = nx(sx), ly(sy) = ny(sy) for proper sx, sy
that lz(s) ≥ nz(s) and thus lz(s) = nz(s) for proper s. We conclude that lz is a
lower bounding function for z. ⊓⊔

Lemma 21. There is a polynomial p such that for any z ∈ V (T), the set
rshapes(z) can be computed in time m2kp(l), where l is the length of F .

Proof. To compute rshapes(z), we compute all pairs (union(f), union(g)) for
(f, g) ∈ outfunctions(z)× infunctions(z). To compute the set Xz , we run through
all clauses C ∈ Fz and determine var(C)∩ varz. This can be done in time poly-
nomial in l, and the same holds for the set Xz . A function f ∈ outfunctions(z)
maps each X ∈ Xz to a set f(X) ∈ proj(Fz |X , X). By Proposition 6 the set
proj(Fz |X , X) can by computed in time polynomial in l for each X ∈ Xz . Going
through all possible pairs (f, g) ∈ outfunctions(z) × infunctions(z) amounts to
going through all possible combinations of choices of f(X) ∈ proj(Fz |X , X) for
each X ∈ Xz and g(X ′) ∈ proj(Fz |X′ , X ′) for each X ′ ∈ Xz , of which there are
at most (m+ 1)2k. For each such pair (f, g) we compute the sets union(f) and
union(g), which can be done in time polynomial in l. ⊓⊔

Lemma 22. Let x, y, z ∈ V (T) such that x and y are the children of z. Let
sx ∈ shapes(x), sy ∈ shapes(y), and sz ∈ shapes(z). It can be decided in time
O(l2) whether sx and sy generate sz, where l is the length of F .

Proof. We only have to check conditions (1) to (3), which can easily be done in
time quadratic in l since the sets of clauses involved have length at most l. ⊓⊔

Lemma 23. For any leaf node z ∈ V (T) a lower bounding function for z can
be computed in time O(l), where l is the length of F .

Proof. Every leaf z ∈ V (T) is either associated with a clause C ∈ F or a variable
v ∈ var(F). In the first case, varz = ∅ and so Xz = ∅ if Fz = ∅ or Xz =
{∅}. It follows that the set outfunctions(z) only contains the empty function
or the function f with domain {∅} such that f(∅) = ∅. For the set Xz we
get Xz = {var(C)} for the unique clause C ∈ Fz . Since Fz |var(C) = {C} we
have proj(Fz |var(C), var(C)) = {{C}, ∅} and thus infunctions(z) = {g, g′}, where
g is the function with domain {var(C)} such that g(var(C)) = {C} and g′ is
the function with domain {var(C)} such that g′(var(C)) = ∅. It follows that
rshapes(z) only contains the shapes (∅, ∅) and (∅, {C}). The set varz is empty,
so 2varz contains only the empty assignment which does not satisfy any clause.
Hence nz((∅, ∅)) = 0 and nz((∅, {C})) = 1.

In the second case, varz = {v} for some variable v ∈ var(F). Since Fz = ∅
we have Xz = ∅ and so infunctions(z) only contains the empty function. The
set Xz contains {v}, and the empty set if there is a clause C ∈ F with v /∈
var(C). We get proj(Fz |{v}, {v}) = {F+

v , F−
v }, where F+

v is the set of clauses of

F with a positive occurrence of v, and F−
v is the set of clauses F with a negative

occurrence of v. Moreover, proj(Fz|∅, ∅) = {∅}. It follows that rshapes(z) =
{(F+

v , ∅), (F−
v , ∅)}. The set 2varz only contains the assignments τ0 with τ0(v) = 0

and τ1 with τ1(v) = 1, and Fz(τ0) = F−
v and Fz(τ1) = F+

v . This implies
nz((F

+
v , ∅)) = 1 and nz((F

−
v , ∅)) = 1.

In either case the set rshapes(z) and the values nz(s) for each s ∈ rshapes(z)
can be computed in time O(l). These values trivially provide a lower bounding
function for z. ⊓⊔

Lemma 24. There is a polynomial p such that for any inner node z ∈ V (T),
a lower bounding function for z can be computed in time m6kp(l), provided that
lower bounding functions have already been computed for both children of z, where
l denotes the length of F .

Proof. By Lemma 21, there is a polynomial q (independent of z) such that the
set rshapes(z) can be computed in time O(m2kq(l)). Let x and y denote the
children of z, and let lx and ly be lower bounding functions for x and y. We
compute a lower bounding function lz for z as follows. Initially, we set lz(sz) = 0
for all sz ∈ rshapes(z). We then run through all triples of shapes sx ∈ rshapes(x),
sy ∈ rshapes(y), and sz ∈ rshapes(z) and check whether sx and sy generate sz.
If that is the case, we add lx(sx) ly(sy) to lz(sz).

Correctness follows from Lemma 20 and the fact that lx, ly are lower bounding
functions for x and y. The bound on the runtime is obtained as follows. By
Corollary 17 there are at most (m+ 1)6k triples (sx, sy, sz) of shapes that have
to be considered. For each one, one can decide whether sx and sy generate
sz in time O(l2) by Lemma 22. Depending on the outcome of that decision
we may have to multiply two integers lx(sx) and ly(sy), adding the result to
lz(sz). These values are bounded from above by 2|var(F)| ≤ 2l, so their binary
representations have size O(l) and these arithmetic operations can be carried
out in time polynomial in l. ⊓⊔

Lemma 25. There is a polynomial p such that a lower bounding function for z
can be computed for every z ∈ V (T) in time m6kp(l), where l is the length of F .

Proof. By Lemma 23, a lower bounding function for a leaf of T can be computed
in time O(l). The number of leaves of T is in O(l), so we can compute lower
bounding functions for all of them in time O(l2). By Lemma 24, we can then
compute lower bounding functions for each inner node z ∈ V (T) in a bottom up
manner. For each inner node z, a lower bounding function can computed in time
m6kq(l) by Lemma 24, where q is a polynomial independent of z. The number
of inner nodes of T is in O(l), so this requires O(m6kl q(l)) time in total. ⊓⊔

Proposition 26. There is a polynomial p and an algorithm A such that A, given
a CNF formula F and a decomposition tree (T, δ) of I(F), computes the number
of satisfying total truth assignments of F in time m6kp(l). Here, m denotes the
number of clauses of F , l denotes the length of F , and k = index (T, δ).

Proof. By Lemma 25 a lower bounding function lr for the root r of T can be
computed in time m6k q(l), where q is a polynomial independent of F . By
Lemma 8, the value nr((∅, ∅)) corresponds to the number of satisfying total truth
assignments of F , and the shape (∅, ∅) is proper. Since lr is a lower bounding
function for r it follows that lr((∅, ∅)) = nr((∅, ∅)). ⊓⊔

Proof (of Theorem 1). Let C be a graph class of bounded symmetric clique-width
and F a CNF formula of length l with m clauses such that I(F) ∈ C. Let k be an
upper bound for the symmetric clique-width of any graph in C. We compute a de-
composition tree (T, δ) of I(F) such that rankw(T, δ) = rankw(I(F)) as follows.
Initially, we set k′ := 1. We then repeatedly run the algorithm of Theorem 5 and
increment k′ by one until we find a decomposition of rank-width k′. This will be
the case after at most k steps since rankw(I(F)) ≤ scw(I(F)) by Corollary 4.
Since C is fixed, we can consider k (and every k′ ≤ k) a constant, so (T, δ) can
be obtained in time O(|V (I(F))|3) by Theorem 5. Because 2l is an upper bound
on the number of vertices of I(F), this is in lO(1) (assuming that l ≥ 2). By
Lemma 3, index (T, δ) ≤ 2rankw(I(F)) and thus index (T, δ) ≤ 2scw(I(F)) ≤ 2k.
By Proposition 26, the number of satisfying total truth assignments of F can
be computed in time m6 index(T,δ)p(l) for some polynomial p independent of F ,

that is, in time mO(2k)p(l). Since k is a constant, this is in lO(1), as is the total
runtime. ⊓⊔

4 Conclusion

We have shown that #SAT is polynomial-time tractable for classes of for-
mulas with incidence graphs of bounded symmetric clique-width (or bounded
clique-width, or bounded rank-width). It would be interesting to know whether
this problem is tractable under even weaker structural restrictions. For instance,
it is currently open whether #SAT is polynomial-time tractable for classes of
formulas of bounded β-hypertree width [10] (if a corresponding decomposition
is given).

Acknowledgements The authors would like to thank an anonymous referee for
suggesting to state the main results in terms of symmetric clique-width instead
of Boolean-width.

References

1. Fahiem Bacchus, Shannon Dalmao, and Toniann Pitassi. Algorithms and complex-
ity results for #SAT and Bayesian inference. In 44th Annual IEEE Symposium on
Foundations of Computer Science (FOCS’03), pages 340–351, 2003.

2. Binh-Minh Bui-Xuan, Jan Arne Telle, and Martin Vatshelle. H-join decomposable
graphs and algorithms with runtime single exponential in rankwidth. Discrete
Applied Mathematics, 158(7):809–819, 2010.

3. Binh-Minh Bui-Xuan, Jan Arne Telle, and Martin Vatshelle. Boolean-width of
graphs. Theoretical Computer Science, 412(39):5187–5204, 2011.

4. Bruno Courcelle. Clique-width of countable graphs: a compactness property. Dis-
crete Mathematics, 276(1-3):127–148, 2004.

5. Petr Hliněný and Sang il Oum. Finding branch-decompositions and rank-
decompositions. SIAM J. Comput., 38(3):1012–1032, 2008.

6. E. Fischer, J. A. Makowsky, and E. R. Ravve. Counting truth assignments of
formulas of bounded tree-width or clique-width. Discr. Appl. Math., 156(4):511–
529, 2008.

7. Robert Ganian and Petr Hliněný. On parse trees and Myhill-Nerode-type tools
for handling graphs of bounded rank-width. Discr. Appl. Math., 158(7):851–867,
2010.

8. Robert Ganian, Petr Hlinený, and Jan Obdrzálek. Better algorithms for satisfia-
bility problems for formulas of bounded rank-width. Fund. Inform., 123(1):59–76,
2013.

9. Serge Gaspers and Stefan Szeider. Strong backdoors to bounded treewidth SAT.
In Proceedings of FOCS 2013, The 54th Annual Symposium on Foundations of
Computer Science, Berkeley, California, USA, to appear.

10. Georg Gottlob and Reinhard Pichler. Hypergraphs in model checking: acyclicity
and hypertree-width versus clique-width. SIAM J. Comput., 33(2):351–378, 2004.

11. Naomi Nishimura, Prabhakar Ragde, and Stefan Szeider. Solving #SAT using
vertex covers. Acta Informatica, 44(7-8):509–523, 2007.

12. Sebastian Ordyniak, Daniël Paulusma, and Stefan Szeider. Satisfiability of acyclic
and almost acyclic CNF formulas. Theoretical Computer Science, 481:85–99, 2013.

13. Daniël Paulusma, Friedrich Slivovsky, and Stefan Szeider. Model counting for
CNF formulas of bounded modular treewidth. In Natacha Portier and Thomas
Wilke, editors, Proceedings of STACS 2013, volume 20 of LIPIcs, pages 55–66.
Leibniz-Zentrum fuer Informatik, 2013.

14. Dan Roth. On the hardness of approximate reasoning. Artificial Intelligence,
82(1-2):273–302, 1996.

15. Marko Samer and Stefan Szeider. Algorithms for propositional model counting. J.
Discrete Algorithms, 8(1):50–64, 2010.

16. Tian Sang, Paul Beame, and Henry A. Kautz. Performing Bayesian inference
by weighted model counting. In Proceedings of the 20th national conference on
Artificial intelligence - Volume 1, AAAI’05, pages 475–481. AAAI Press, 2005.

17. Stefan Szeider. On fixed-parameter tractable parameterizations of SAT. In Enrico
Giunchiglia and Armando Tacchella, editors, SAT 2003, Selected and Revised Pa-
pers, volume 2919 of Lecture Notes in Computer Science, pages 188–202. Springer
Verlag, 2004.

18. L. G. Valiant. The complexity of computing the permanent. Theoretical Computer
Science, 8(2):189–201, 1979.

	Model Counting for Formulas ofBounded Clique-Width

