Skip to main content

Feed-Forward Neural Network Approximation Applied to Activated Sludge System

  • Conference paper

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 402))

Abstract

The dynamic behavior of an activated sludge system is highly complex and uncertain. To efficiently control and operate the system, a reliable model capable of accurately describing the several time-varying parallel processes of the system is needed. Most of the existing models are too complex to use for design or control purposes. This paper presents a feed-forward neural network model for the system.  The model validation was achieved through the use of appropriate international accepted data of the benchmark simulation model no. 1 (BSM1). Simulation studies revealed that the neural network model exhibited an outstanding performance in predicting the effluent quality, root mean square error (RMSE) of 0.0464, mean absolute deviation (MAD) of 0.0347, correlation coefficient (R) of 0.979 for chemical oxygen demand (COD) and RMSE of  0.1103, MAD of 0.0794, R of 0.841 for the total nitrogen (TN) could be acheived. The model is quite effective and suitable tool for the activated sludge system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Henze, M., Gujer, W., Mino, T., Loosedrecht, V.: Activated Sludge Models ASM1, ASM2, ASM2D and ASM3. IWA Publishing, London (2000)

    Google Scholar 

  2. Gujer, W.: Activated Sludge Modelling: past, present and future. Water Science and Technology 53(3), 111–119 (2006)

    Article  Google Scholar 

  3. Jeppson, U.: A Simplified Control-Oriented Model of the Activated Sludge Process. Mathematical Modelling of Systems 1(1), 3–16 (1995)

    Google Scholar 

  4. Tay, J., Zhang, X.: A Fast Predicting Neuro Fuzzy Model for High-Rate Anaerobic Wastewater Treatment Systems. Water Research 34(11), 2849–2860 (2000)

    Article  Google Scholar 

  5. Gontarski, C., Rodrigues, P., Mori, M., Prenem, L.: Simualtion of an Industrial wastewater Treatment Plant using Artificial Neural Networks. Computers and Chemical Engineering 24, 1719–1723 (2000)

    Article  Google Scholar 

  6. Oliveira-Esquerre, K., Mori, M., Bruns, R.: Simulation of an Industrial Wastewater Treatment Plant using Artificial Neural Networks and Principal Component Analysis. Brazilian Journal of Chemical Engineering 19(4), 365–370 (2002)

    Article  Google Scholar 

  7. Nasr, M., Moustafa, M., Seif, H., El-kobrosy, G.: Application of the Artificial Neural Network for the Prediction of El-agamy Wastewater Treatment Plant Performance-Egypt. Alexandria Engineering Journal 51, 37–43 (2012)

    Article  Google Scholar 

  8. Mjalli, F., Al-Asheh, S., Al-Fadala, H.: Use of Artificial Neural Network Black Box Modelling for the Prediction of Wastewater Treatment Plants Performance. Journal of Environmental Management 83(3), 329–338 (2007)

    Article  Google Scholar 

  9. Kriger, C., Tzenova, R.: Neural Networks for Prediction of Wastewater Treatment Plant Disturbance. In: 8th IEEE-Africon Conference, Windhoek, Namibia (2007)

    Google Scholar 

  10. Alex, J., Benedetti, L., Copp, J., Garnaey, K., Jeppson, U., Nopens, I., Pons, M., Rosen, C., Steyer, J., Vanrolleghem, P.: Benchmark Simulation Model no. 1. IWA publishing, London (2008)

    Google Scholar 

  11. McCulloch, W., Pitts, W.: A Logical Calculus of the Ideas Immanent in Nervous Activity. Bulletin of Mathematical Biophysics 5, 115–133 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chiang, Y., Chang, L., Chang, F.: Comparison of Static feed-forward and Dyanmic Feedback Neural Networks for Rainfall-Runoff Modelling. Journal of Hydrology 290, 297–311 (2004)

    Article  Google Scholar 

  13. Jain, A., Mao, J., Mohluddin, K.: Artificial Neural Networks: A Tutorial. IEEE-Computer Magazine 29(3), 31–44 (1996)

    Article  Google Scholar 

  14. Rumelhart, D., Hinton, G., Williams, R.: Learning Internal Representations by Error Propagation. Parallel Distributed Processing 1, 318–362 (1986)

    Google Scholar 

  15. Hetch, N.: Kolmogorov’s Mapping Neural Network Existence Theorem. In: IEEE- First Annual International Conference on Neural Networks, New York (1987)

    Google Scholar 

  16. Rogers, L.L., Dowla, F.U.: Optimization of Groundwater Remediation using Artificial Neural Networks with Parallel Solute Transport Modelling. Water Resource Research 30(2), 457–481 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gaya, M.S., Wahab, N.A., Sam, Y.M., Samsuddin, S.I. (2013). Feed-Forward Neural Network Approximation Applied to Activated Sludge System. In: Tan, G., Yeo, G.K., Turner, S.J., Teo, Y.M. (eds) AsiaSim 2013. AsiaSim 2013. Communications in Computer and Information Science, vol 402. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45037-2_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45037-2_63

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45036-5

  • Online ISBN: 978-3-642-45037-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics