
ar
X

iv
:1

30
2.

72
62

v6
  [

cs
.M

M
] 

 4
 J

an
 2

01
4

Towards a provably resilient scheme for

graph-based watermarking

Lucila M. S. Bentoa,b, Davidson Boccardob, Raphael C. S. Machadob,
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Abstract

Digital watermarks have been considered a promising way to fight software
piracy. Graph-based watermarking schemes encode authorship/ownership
data as control-flow graph of dummy code. In 2012, Chroni and Nikolopoulos
developed an ingenious such scheme which was claimed to withstand attacks
in the form of a single edge removal. We extend the work of those authors
in various aspects. First, we give a formal characterization of the class of
graphs generated by their encoding function. Then, we formulate a linear-
time algorithm which recovers from ill-intentioned removals of k ≤ 2 edges,
therefore proving their claim. Furthermore, we provide a simpler decoding
function and an algorithm to restore watermarks with an arbitrary number
of missing edges whenever at all possible. By disclosing and improving upon
the resilience of Chroni and Nikolopoulos’s watermark, our results reinforce
the interest in regarding it as a possible solution to numerous applications.
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1. Introduction

The illegal reproduction of software has become a major concern for the
industry. According to the Business Software Alliance, the commercial value
of unlicensed software put into the world market in 2011 totaled 63.4 billion
dollars [2]. To counter such practice, many promising methods have been
devised, among which the idea of software watermarking.

The use of paper watermarks to prevent counterfeiting dates back to the
thirteenth century. Generally speaking, watermarks are unique identifiers
embedded into proprietary objects to enforce authenticity. In a digital ob-
ject, particularly in a piece of software, a watermark may act not only as a
certificate of authorship, but also as a means of tracing the original owner of
the object, therefore discouraging piracy.

The first software watermark was proposed in 1996 by Davidson and
Myrhvold [13], while the first watermarking scheme to exploit concepts of
Graph Theory was formulated by Venkatesan, Vazirani and Sinha [22] in 2001.
Their technique, whereby an integer was encoded as a special digraph dis-
guised into the software’s control-flow graph, was later patented [23]. Other
original ideas, improvements and surveys on the available methods have been
contributed by many authors ever since. See, for example, [9, 10, 11, 14, 20,
25, 26].

Willing to prevent the timely retrieval of the encoded identification data,
malicious agents may attempt to tamper with the watermark. A watermark
solution is therefore only as secure as it is able to resist attacks of various
sorts. Naturally, a lot of research has been put up lately towards developing
more resilient solutions as well as strengthening existing ones. This paper
pursues this latter goal.

We consider the graph-based watermarking scheme introduced by Coll-
berg, Kobourov, Carter and Thomborson [9], and afterwards developed and
improved upon by Chroni and Nikolopoulos in a series of papers [3, 4, 5, 6, 7].
These latter authors proposed a watermark graph belonging to a subclass of
the reducible permutation graphs introduced by the former authors. Though
the mechanics of encoding and decoding the proposed watermark is well de-
scribed in [5], such special subclass of reducible permutation graphs has not
been fully characterized. Moreover, not much was known thus far about
the resilience of Chroni and Nikolopoulos’s graphs to malicious attacks, even
though their ability to withstand single edge removals has been suggested
without proof.
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This paper is organized as follows. In Section 2, we present some prelim-
inary concepts related to graph-based software watermarking, including the
most common forms of attacks. In Section 3, we recall the watermark from
Chroni and Nikolopoulos, and we state a number of structural properties,
the proofs of which we delay until Section 7 for the sake of readability. In
Section 4, we define and characterize the family of canonical reducible per-
mutation graphs, which correspond to the watermarks produced by Chroni
and Nikolopoulos’s encoding function. In Section 5, we formulate linear-time
algorithms to reconstruct the original digraph and recover the encoded data
even if two edges are missing. The proof of one of the central results in
that section, namely Theorem 24, is somewhat involved, and we dedicate a
whole section to it towards the end of the paper. In Section 6, we propose
a robust polynomial-time algorithm that, given a watermark with whatever
number k of missing edges, either recovers the encoded data or proves that
the the watermark has become irremediably damaged. Finally, Sections 7
and 8 contain the postponed proofs for the properties stated in Section 3
and for Theorem 24, respectively. Section 9 concludes the paper with our
final remarks.

Throughout the text, we let V (G) and E(G) respectively denote, as usual,
the vertex set and edge set of a given graph G. Also, we let N+

G (v) and N−
G (v)

be the sets of out-neighbors and in-neighbors of vertex v in G, with d+G(v)
and d−G(v) their respective sizes. If J is a subset of either V (G) or E(G),
then G− J corresponds to the graph obtained from G by the removal of J .

2. Graph-based software watermarking

Software watermarking schemes provide the necessary means of embed-
ding identification data—typically a copyright notice or a customer number—
into a piece of software. We refer to the identification data as the identifier,
and we may regard it as an integer, for simplicity. Watermarks are appro-
priate encodings of identifiers, and they can be broadly divided into two
categories: static and dynamic [8]. The former are embedded in the code,
whereas the latter are embedded into a program’s execution state at runtime.

A static, graph-based watermarking scheme usually consists of four algo-
rithms:

• an encoder, which converts the identifier into a graph—the watermark;

• a decoder, which extracts the identifier from the watermark;
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• an embedder, a function whose input parameters are the software it-
self (either the binary code or the source code in some programming
language), the intended watermark and possibly some secret key, and
whose output is a modified software containing the watermark; and

• an extractor, which retrieves the watermark graph from the water-
marked software.

To every computer program one can associate a directed graph represent-
ing the possible sequences of instructions (or, more precisely, of jump-free
instruction blocks) during its execution. Such graph, called the control-flow
graph (CFG) of the software [1], can be obtained by means of static analy-
sis [17, 24]. What the embedder does is basically to insert dummy code into
the program so that the intended watermark graph shows up as an induced
subgraph of the CFG. The position of the watermark graph within the CFG
is often determined as a function of a secret key. Knowledgeable of the se-
cret key, the extractor retrieves that subgraph, which is then passed along to
the decoding algorithm. Among the existing tools for embedding/extracting
graph-based watermarks, we cite Collberg’s SandMark project [12]. In this
paper, we focus on the encoding/decoding algorithms described by Chroni
and Nikolopoulos in [5].

Attacks. Among the several different kinds of attacks against graph-based
watermarks, we list the following:

• additive attacks, in which other watermarks are inserted into the same
object, generating ambiguity;

• subtractive attacks, in which the watermark is removed altogether; and

• distortive attacks, in which the watermark is modified to confound the
decoder.

Additive and subtractive attacks can be precluded to a great extent by
techniques of cryptography and software diversity [19]. On the other hand,
distortive attacks—also known as jamming attacks—are more difficult to
deal with and are arguably the most important attack model to be concerned
about [22]. In some cases, the distortive attacker may even be able to reverse
engineer the entire code and apply semantics-preserving modifications which
modify the CFG structurally without affecting the software’s functionalities.
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3. The watermark by Chroni and Nikolopoulos

We recall the encoding algorithm described in [5]. The index of the first
element in all considered sequences is 1.

Let ω be a positive integer identifier, and n the size of the binary represen-
tation B of ω. Let also n0 and n1 be the number of 0’s and 1’s, respectively,
in B, and let f0 be the index of the leftmost 0 in B. The extended binary B∗

is obtained by concatenating n digits 1, followed by the one’s complement of
B and by a single digit 0. We let n∗ = 2n + 1 denote the size of B∗, and
we define Z0 = (z0i ), i = 1, . . . , n1 + 1, as the ascending sequence of indexes
of 0’s in B∗, and Z1 = (z1i ), i = 1, . . . , n+ n0, as the ascending sequence of
indexes of 1’s in B∗.

Let S be a sequence of integers. We denote by SR the sequence formed
by the elements of S in backward order. If S = (si), for i = 1, . . . , t, and
there is an integer k ≤ t such that the subsequence consisting of the elements
of S with indexes less than or equal to k is ascending, and the subsequence
consisting of the elements of S with indexes greater than or equal to k is
descending, then we say S is bitonic. If all t elements of a sequence S are
distinct and belong to {1, . . . , t}, then S is a permutation. If S is a permu-
tation of size t, and, for all 1 ≤ i ≤ t, the equality i = ssi holds, then we say
S is self-inverting. In this case, the unordered pair (i, si) is called a 2-cycle
of S, if i 6= si, and a 1-cycle of S, if i = si. If S1, S2 are sequences (re-
spectively, paths in a graph), we denote by S1||S2 the sequence (respectively,
path) formed by the elements of S1 followed by the elements of S2.

Back to Chroni and Nikolopoulos’s algorithm, we define Pb = (bi), with
i = 1, . . . , n∗, as the bitonic permutation Z0||Z

R
1 . Finally, the self-inverting

permutation Ps = (si) is obtained from Pb as follows: for i = 1, . . . , n∗,
element sbi is assigned value bn∗−i+1, and element sbn∗

−i+1
is assigned value bi.

In other words, the 2-cycles of Ps correspond to the n unordered pairs of
distinct elements of Pb that share the same minimum distance to one of the
extremes of Pb, that is, the pairs (p, q) = (bi, bn∗−i+1), for i = 1, . . . , n. Since
the central index i = n + 1 of Pb is the solution of equation n∗ − i + 1 = i,
element bn+1 — and no other — will constitute a 1-cycle in Ps. We refer to
such element of Ps as its fixed element, and we let f denote it.

The watermark generated by Chroni and Nikolopoulos’s encoding algo-
rithm [5] is a directed graph G whose vertex set is {0, 1, . . . , 2n + 2}, and
whose edge set contains 4n + 3 edges, to wit: a path edge (u, u − 1) for
u = 1, . . . , 2n+2, constituting a Hamiltonian path that will be unique in G,
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11 10 9 8 7 6 5 4 3 2 1 014 13 12

Figure 1: Watermark for identifier ω = 43.

and a tree edge from u to q(u), for u = 1, . . . , n∗, where q(u) is defined as the
vertex v > u with the greatest index in Ps to the left of u, if such v exists, or
2n + 2 otherwise. The rationale behind the name tree edge is the fact that
such edges induce a spanning tree of G \ {0}.

Let us glance at an example. For ω = 43, we have B = 101011, n = 6,
n0 = 2, n1 = 4, f0 = 2, B∗ = 1111110101000, n∗ = 13, Z0 = (7, 9, 11, 12, 13),
Z1 = (1, 2, 3, 4, 5, 6, 8, 10), Pb = (7, 9, 11, 12, 13, 10, 8, 6, 5, 4, 3, 2, 1),Ps = (7, 9,
11, 12, 13, 10, 1, 8, 2, 6, 3, 4, 5) and f = 8. The watermark graph associated to
ω presents, along with the path edges in the Hamiltonian path 14, 13, . . . , 0,
the tree edges (1, 10), (2, 8), (3, 6), (4, 6), (5, 6), (6, 8), (7, 14), (8, 10), (9, 14),
(10, 13), (11, 14), (12, 14) and (13, 14), as illustrated in Figure 1.

In Section 4, we give a formal characterization of the class of such graphs,
allowing for linear-time recognition and the formulation of efficient recovering
algorithms against distortive attacks.

3.1. Structural properties

We now state a number of properties concerning the watermark from
Chroni and Nikolopoulos and the special permutations they are associated
to. These properties, whose proofs are given in Section 7, set the basis for the
characterization of the class of canonical reducible permutation graphs, which
is given in Section 4, and for the recovering procedures described in Section 5.

For all properties stated below, let G be the watermark graph associated
to an identifier ω of size n, and let Pb and Ps be, respectively, the bitonic
and the self-inverting permutations dealt with during the construction of G.

Property 1. For 1 ≤ i ≤ n, the element bn+i+1 in Pb is equal to n− i+ 1,
that is, the n rightmost elements in Pb, from right to left, are 1, . . . , n.

Property 2. The elements whose indexes are 1, . . . , n in Ps are all greater
than n.
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Property 3. The fixed element f satisfies f = n + f0, unless the identifier
ω is equal to 2k − 1 for some integer k, whereupon f = n∗ = 2n+ 1.

Property 4. In self-inverting permutation Ps, elements indexed 1, . . . ,
f − n − 1 are respectively equal to n + 1, n + 2, . . . , f − 1, and elements
indexed n + 1, n+ 2, . . . , f − 1 are respectively equal to 1, . . . , f − n− 1.

Property 5. The first element in Ps is s1 = n+ 1, and the central element
in Ps is sn+1 = 1.

Property 6. If f 6= n∗, then the index of element n∗ in Ps is equal to n1+1,
and vice-versa. If f = n∗, then the index of element n∗ in Ps is also n∗.

Property 7. The subsequence of Ps consisting of elements indexed 1, . . . ,
n+ 1 is bitonic.

Property 8. For u ≤ 2n, (u, 2n+ 2) is a tree edge of watermark G if, and
only if, u − n is the index of a digit 1 in the binary representation B of the
identifier ω represented by G.

Property 9. If (u, k) is a tree edge of watermark G, with k 6= 2n+ 2, then

(i) element k precedes u in Ps; and

(ii) if v is located somewhere between k and u in Ps, then v < u.

4. Canonical reducible permutation graphs

This section is devoted to the characterization of the class of canonical re-
ducible permutation graphs. After describing some terminology and proving
some preliminary results, we define the class using purely graph-theoretical
predicates. Then, we show it corresponds exactly to the set of watermarks
produced by Chroni and Nikolopoulos’s encoding algorithm [5]. Finally, we
characterize it in a way that suits the design of a decoding algorithm which
is simpler—for untampered with watermarks—and able to recover from re-
movals of k ≤ 2 edges in linear time.

A reducible flow graph [15, 16, 21] is a directed graph G with source
s ∈ V (G), such that, for each cycle C of G, every directed path from s to C
reaches C at the same vertex. It is well known that a reducible flow graph
has at most one Hamiltonian cycle.
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Definition 10. A self-labeling reducible flow graph is a directed graph G
such that

(i) G presents exactly one directed Hamiltonian path H, hence there is
a unique labeling function σ : V (G) → {0, 1, . . . , |V (G)| − 1} of the
vertices of G such that the order of the labels along H is precisely
|V (G)|, |V (G)| − 1, . . . , 0; and,

(ii) considering the labeling σ as in the previous item, N+
G (0) = ∅,

N−
G (0) = {1}, N

+
G (|V (G)| − 1) = {|V (G)| − 2}, |N−

G (|V (G)| − 1)| ≥ 2,
and, for all v ∈ V (G) \ {0, |V (G)| − 1}, N+

G (v) = {v − 1, w}, for some
w > v.

From now on, without loss of generality, we shall take σ for granted and
assume the vertex set of any self-labeling reducible flow graph G is the very
set V (G) = {0, 1, . . . , |V (G)| − 1}. By doing so, we may simply compare two
vertices, e.g. v > u (or v greater than u, in full writing), whereas we would
otherwise need to compare their images under σ, e.g. σ(v) > σ(u).

Definition 11. The representative tree T of a self-labeling reducible flow
graph G with Hamiltonian path H has vertex set V (T ) = V (G)\{0} and edge
set E(T ) = E(G) \ E(H), where all edges are deprived of their orientation.

A representative tree T is always regarded as a rooted tree whose root
is |V (G)| − 1, Moreover, it is regarded as an ordered tree, that is, for each
v ∈ V (T ), the children of v are always considered according to an ascending
order of their labels. For v ∈ T , we denote by N∗

T (v) the set of descendants
of v in T . Figure 2 depicts two representative trees.

Observation 12. The representative tree T of a self-labeling reducible flow
graph G satisfies the max-heap property, that is, if vertex u is a child of vertex
v in T , then v > u.

Proof: Direct from the way T is rooted and from property (ii) in the def-
inition of self-labeling reducible flow graphs, whereby the in-neighbors of w
in G \ E(H) comprise only vertices v < w. We convey the idea that a
representative tree T satisfies the max-heap property by saying that T is a
descending, ordered, rooted tree. ✷
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Figure 2: Representative trees of the watermark graphs produced by Chroni and
Nikolopoulos’s encoding algorithm for identifiers (a) ω = 31 and (b) ω = 43 (the full
watermark for ω = 43 is shown in Figure 1). It is easy to check that such graphs are
self-labeling reducible flow graphs.

Definition 13. Let S = (si), i = 1, . . . , 2n + 1, be a self-inverting permuta-
tion. We say S is canonical if:

(i) there is exactly one 1-cycle in S;

(ii) each 2-cycle (si, sj) of S satisfies 1 ≤ i ≤ n, for si > sj;

(iii) s1, . . . , sn+1 is a bitonic subsequence of S starting at s1 = n + 1 and
ending at sn+1 = 1.

Lemma 14. In any canonical self-inverting permutation, the fixed element
f satisfies f ∈ [n+ 2, 2n+ 1].

Proof: By property (ii) of canonical self-inverting permutations, each 2-cycle
of S must contain at least one element whose index i satisfies 1 ≤ i ≤ n.
From property (i), and given the size of S, it follows that the number of
2-cycles in S is n, hence, by the pigeonhole principle, each and every 2-cycle
in S contains exactly one such element si with 1 ≤ i ≤ n. But this means the
other element in each 2-cycle, namely sj , satisfies sj ∈ [n + 1, 2n+ 1]. Since
there are n+1 values in that range and only n such elements sj, there must
be exactly one element sk ∈ [n+1, 2n+1] which is not part of a 2-cycle, and
therefore sk = f . Now, by property (iii), n + 1 = s1, hence f 6= n + 1, and
the lemma follows. ✷
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Let T be a representative tree. The preorder traversal P of T is a sequence
of its vertices that is recursively defined as follows. If T is empty, P is also
empty. Otherwise, P starts at the root r of T , followed by the preorder
traversal of the subtree whose root is the smallest child of r, followed by
the preorder traversal of the subtree whose root is the second smallest child
of r, and so on. The last (rightmost) element of P is also referred to as the
rightmost element of T .

Lemma 15. The preorder traversal of a representative tree T is unique.
Conversely, a representative tree T is uniquely determined by its preorder
traversal.

Proof: We use induction on |V (T )|. If |V (T )| ≤ 1, the lemma holds trivially.
Let |V (T )| > 1, and let vk be the uniquely defined leaf of T for which the
path v1, . . . , vk from the root v1 of T to vk has the property that each vi,
for 1 < i ≤ k, is the greatest vertex among the children of v − 1. By the
induction hypothesis, the preorder traversal P ′ of T \{vk} is unique. Because
vk is necessarily the rightmost vertex of T , the preorder traversal P of T is
uniquely determined as P ′||vk.

Conversely, let P be a preorder traversal of some representative tree T .
If |P | ≤ 1, there is nothing to prove. Otherwise, suppose the lemma holds
for preorder traversals of size ≤ k, and consider |P | = k. Let vk be the
rightmost element of P . Clearly, vk must be a leaf of T , and also the rightmost
(i.e., greatest) vertex among the children of its parent. Now define P ′ =
P − {vk}. By the induction hypothesis, there is a unique tree T ′ whose
preorder traversal is P ′. Let vk−1 be the rightmost element of P ′. We obtain
T from T ′, by making vk the rightmost child of the smallest ancestor vj of
vk−1 satisfying vj > vk, so P is clearly the preorder traversal of T . Since no
other parent for vk would be possible without breaking the ascending order
of siblings in a representative tree, T is uniquely defined by P . ✷

The first element of the preorder traversal P of a tree T is always its root.
If we remove the first element of P , the remaining sequence is said to be the
root-free preorder traversal of T .

We can now define the class of canonical reducible permutation graphs.

Definition 16. A canonical reducible permutation graph G is a self-labeling
reducible flow graph on 2n + 3 vertices, for some integer ≥ 1, such that
the root-free preorder traversal of the representative tree of G is a canonical
self-inverting permutation.

10



Lemma 17. If G is a watermark instance produced by Chroni and Nikolopou-
los’s encoding algorithm [5], then G is a canonical reducible permutation
graph.

Proof: Recall, from Section 3, that the watermark graph G associated to
identifier ω, whose binary representation B has size n, is constructed with
vertex set V (G) = {0, . . . , 2n + 2} and an edge set E(G) which can be par-
titioned into path edges and tree edges in such a way that all conditions in
the definition of self-labeling reducible flow graphs are satisfied, as can be
easily checked. Now, by Property 9 of Chroni and Nikolopoulos’s watermarks
(see Section 3.1), the tree edges of G constitute a representative tree T of G
whose root-free preorder traversal is precisely the self-inverting permutation
Ps determined by the encoding algorithm from [5] as a function of B. Con-
sequently, what is left to prove is that Ps is canonical. The first condition to
Ps being canonical is asserted by Property 3 in Section 3.1 (the fixed element
f corresponds to the unique 1-cycle in Ps); the second condition is given
by Property 2; and, finally, Properties 5 and 7 fulfill the third condition,
therefore Ps is canonical. ✷

Lemma 18. If G is a canonical reducible permutation graph, then G is the
watermark produced by Chroni and Nikolopoulos’s encoding algorithm [5] for
some integer identifier ω.

Proof: LetG be a canonical reducible permutation graph, and T its represen-
tative tree. By Lemma 15, T is uniquely defined by its preorder traversal P .
We show that P corresponds to the self-inverting permutation Ps gener-
ated by the encoding algorithm of [5] (please refer to Section 3 for details)
when computing the watermark for some integer identifier ω. By definition,
P = (si), i = 1, . . . , 2n+ 1, is a canonical self-inverting permutation present-
ing a single 1-cycle f and a number n of 2-cycles (p, q). Those 2-cycles (p, q)
define exactly one bitonic permutation Pb = (bj), j = 1, . . . , 2n+1 satisfying
Property 1 of Chroni and Nikolopoulos’s watermarks with

(i) bn+1 = f , and,

(ii) for all j ∈ {1, . . . , n}, bj = p if and only if b2n+1−j = q.

Such bitonic permutation Pb can be regarded as Z0||Z
R
1 by assigning to Z0

the prefix of Pb comprising its maximal ascending subsequence, and now the

11



indexes of 0’s and 1’s in the extended binary B∗ are totally determined.
We proceed by extracting the binary B that is the one’s complement of the
subsequence of B∗ with digits from the (n + 1)th to the (2n)th position in
B∗. Regarding B as the binary representation of a positive integer ω, the
image of such ω under the encoding function of Chroni and Nikolopoulos is
isomorphic to G. ✷

We proceed to the last definitions before we can give an appropriate,
algorithmic-flavored characterization of canonical reducible permutation
graphs. Let T be the representative tree of some canonical reducible permu-
tation graph G, and P a canonical self-inverting permutation corresponding
to the root-free preorder traversal of T . We refer to the fixed element f of P
also as the fixed element (or vertex) of both G and T . Similarly, the 2-cyclic
elements of P correspond to cyclic elements (or vertices) of both G and T .
A vertex v ∈ V (T ) \ {2n + 2} is considered large when n < v ≤ 2n + 1;
otherwise, v ≤ n and v is dubbed as small. Denote by X, Y , respectively,
the subsets of large and small vertices in T , so |X| = n+ 1 and |Y | = n. By
Lemma 14, f ∈ X . We then define Xc = X \ {f} = {x1, . . . , xn} as the set
of large cyclic vertices in T .

Definition 19. A representative tree T is a Type-1 tree — see Figure 3(a)
— when

(i) n+ 1, n+ 2, . . . , 2n+ 1 are children of the root 2n+ 2 in T ; and

(ii) 1, 2, . . . , n are children of 2n.

Definition 20. A representative tree T is a Type-2 tree relative to f — see
Figure 3(b) — when

(i) n + 1 = x1 < x2 < . . . < xℓ = 2n + 1 are the children of 2n + 2, for
some ℓ ∈ [2, n− 1];

(ii) xi > xi+1 and xi is the parent of xi+1, for all i ∈ [ℓ, n− 1];

(iii) 1, 2, . . . , f − n− 1 are children of xn;

(iv) xi = n + i, for 1 ≤ i ≤ f − n− 1;

(v) f is a child of xq, for some q ∈ [ℓ, n] satisfying xq+1 < f whenever
q < n; and

12
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Figure 3: (a) A Type-1 representative tree. (b) A Type-2 representative tree.

(vi) N∗
T (f) = {f −n, f −n+1, . . . , n} and yi ∈ N∗

T (f) has index xyi−f +1
in the preorder traversal of N∗

T [f ].

Lemma 21. If yr is the rightmost vertex of a Type-2 representative tree T
relative to some f 6= 2n + 1, then yr is equal to the number ℓ of children of
the root 2n+ 2 in T .

Proof: By the definition of a Type-2 representative tree, the only non-
leaf child of the root 2n + 2 of T is its rightmost child xℓ, therefore each
child xi of 2n + 2, for 1 ≤ i ≤ ℓ, appears precisely at the ith position in the
root-free preorder traversal P of T . Since, by definition, P is self-inverting,
and yr is the last, (2n + 1)th element of P , it follows that yr must be equal
to the index of 2n+ 1 = xℓ in P , that is, yr = ℓ. ✷

The following theorem characterizes canonical reducible permutation
graphs in terms of the above defined trees. Such characterization is crucial
for the remainder of the paper, since its straightforward conditions can be
checked in linear time and give rise to the decoding and recovering algorithms
that will come next.

Theorem 22. A digraph G is a canonical reducible permutation graph if,
and only if, G is a self-labeling reducible flow graph and

(i) the fixed element of G is 2n+1 and G has a Type-1 representative tree;
or
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(ii) the fixed element of G belongs to [n+ 2, 2n] and G has a Type-2 repre-
sentative tree.

Proof: Let G be a canonical reducible permutation graph and T its repre-
sentative tree. By definition, G is a self-labeling reducible flow graph. Let
P = s1, . . . , s2n+1 be the root-free preorder traversal of T , hence a canoni-
cal self-inverting permutation, also by definition. This means, among other
things, that P has a unique fixed element f , and that P ′ = s1, . . . , sn+1 is a
bitonic subsequence of P . Since T is descending, it follows that the prefix A
of P ′ constituting its maximal ascending subsequence must comprise solely
vertices that are children of the root 2n+2, the rightmost of which certainly
being 2n+ 1.

First, let f = 2n + 1. Since f constitutes a 1-cycle of P , f must occupy
the rightmost, (2n+1)th position in P , hence f is a leaf of T . Furthermore,
by Property 4 of canonical reducible permutation graphs, it follows that P ′

consists of elements n+1, n+2, . . . , 2n, 1, hence A = n+1, n+2, . . . , 2n, and
these vertices are therefore children of 2n+2 in T . Now, again by Property 4,
elements 1, . . . , n appear, in this order, to the right of A in P . Considering
that P is a preorder traversal and a representative tree satisfies the max-heap
property, we conclude that vertices 1, . . . , n can only be children of 2n, hence
T is a Type-1 tree, as required.

Next, suppose f < 2n+ 1. By Lemma 14, it follows that f ∈ [n+ 2, 2n].
We already know that the children of 2n+ 2 are the vertices of A. Let D be
the subset formed by the remaining vertices of P ′. Clearly, the vertices of D
must appear in descending order. Since T satisfies the max-heap property
and P is a preorder traversal of T , it follows that the largest vertex of D
is a child of 2n + 1, and subsequently each vertex in D is the parent in T
of the vertex placed to its left along the sequence D. Again, because T
satisfies the max-heap property, f ∈ [2n + 2, 2n] must be the child of the
smallest vertex xq ∈ D ∪ {2n + 1} satisfying xq > f . Let us again examine
the ascending subsequence A. We know that the first vertex of A is n + 1.
Suppose the leading k vertices of A are n + 1, n + 2, . . . , nk, for some k.
Because P is self-inverting, it follows that the vertices 1, 2, . . . , k must be
the children of the last (i.e., smallest) vertex of D, and k = f − n − 1 by
Property 4. It remains solely to describe how the remaining small vertices,
namely f − n, f − n+1, . . . , n, are placed in T . Since they appear after f in
P , it can only be that this subset comprises exactly the descendants N∗

T (f)
of f in T . Each of the vertices y ∈ N∗

T (f) constitute a 2-cycle with some

14



vertex x belonging to the bitonic subsequence P ′, hence the index of y in P
is exactly x, and all the conditions for a Type-2 tree have thus been verified.

Conversely, let G be a self-labeling reducible flow graph. First, suppose
that (i) applies and let T be the corresponding Type-1 representative tree.
Then the root-free preorder traversal P of T is

n+ 1, n+ 2, . . . , 2n, 1, 2, . . . , n, 2n+ 1.

Regarding P as a permutation of {1, . . . , 2n+1}, we observe that 2n + 1 is
the only fixed vertex on it; for 1 ≤ i ≤ n, each element n+ i of P has index i,
while i has index n+ i, and n+1, n+2, . . . , 2n, 1 form a bitonic subsequence
of P . Consequently, P is a canonical self-inverting permutation, and G is a
canonical reducible permutation graph.

Finally, suppose (ii) applies. Let T be the corresponding Type-2 represen-
tative tree relative to some f ∈ [n + 2, 2n]. The root-free preorder traversal
P of T consists of

x1, . . . , xℓ, xℓ+1, . . . , xq, xq+1, . . . , xn, 1, 2, . . . , f − n− 1, f, P (N∗
T (f)),

where x1 = n+1; xℓ = 2n+1; xi = n+i for 1 ≤ i ≤ f−n−1; x1, x2, . . . , xn, 1
is a bitonic subsequence of P ; and P (N∗

T (f)) denotes the preorder traversal of
the vertices of N∗

T (f), in which each yi ∈ N∗
T (f) has index xyi−f+1. Observe

that, for 1 ≤ i ≤ f − n − 1, (n + i, i) constitutes a 2-cycle in P . Moreover,
for f −n ≤ i ≤ n, vertex xi forms a 2-cycle with an element yj ∈ N∗

T (f). All
conditions have been met, thus P is a canonical self-inverting permutation
and G is a canonical reducible permutation graph. ✷

Corollary 23. The recognition of canonical reducible permutation graphs
can be achieved in linear time.

Proof: Direct from Theorem 22 and from the definitions of self-labeling
reducible flow graphs, Type-1 and Type-2 representative trees, all of whose
conditions can be verified in linear time easily. ✷

5. Linear-time decoding (k ≤ 2 missing edges)

In this section, we analyze the effects of a distortive attack against a
watermark (i.e., a canonical reducible permutation graph) G from which
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Algorithm 1 reconstruct Hamiltonian path(G′)

input: a damaged watermark G′ with 2n+ 3 vertices and
two missing edges

output: the unique Hamiltonian path H in the original watermark G

1. Let V0 be the set of all vertices with degree zero in G′.

2. Let H be the set of all Hamiltonian path candidates obtained by
a call to plug next subpath(G′, V0, ∅)

3. for each Hamiltonian path candidate H ∈ H do
if validate labels(G′, H) then

return H

k ≤ 2 edges were removed. Note that the unique Hamiltonian path H of G
may have been destroyed by the attack. The knowledge of H is crucial for
determining the labels of the vertices (they range from 2n+2 to 0 along H).
Our first task is therefore to determine whether any path edges are missing
from G, so we can restore H and label the vertices accordingly.

5.1. Reconstructing the Hamiltonian path

The algorithm given in pseudocode as Algorithm 1 retrieves the unique
Hamiltonian path H of a (possibly damaged) watermark G′, that is, a graph
isomorphic to a canonical reducible permutation graph G minus k ≤ 2 edges.
It employs two subroutines presented separately: plug next subpath and vali-
date labels. The algorithm itself is straightforward. It basically builds Hamil-
tonian path candidates for G (possibly by reinserting some edges) and tests
whether the vertex labeling implied by each such candidate satisfies some
conditions. It returns the one and only candidate which passes the test.

The procedure plug next subpath, given as Algorithm 2, takes as input a
graph G′, a path Q with V (Q) ∩ V (G) = ∅, and an output list H, where
(restored) Hamiltonian path candidates of G′ will be placed after being con-
catenated to (the left of) a copy of Q. It starts by determining a set S of sub-
path heads. This set comprises every vertex s ∈ V (G′) satisfying d+G′(s) = 0,
in case Q = ∅, or d+G′(s) ≤ 1, otherwise. Then it computes the collection of
all maximal backward-unbifurcated paths of G′ reaching S (or S-bups). An
S-bup of G′ is a path vj, vj−1, . . . , v1 such that
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• v1 = s, for some s ∈ S;

• (vk, vk−1) ∈ E(G′), for 2 ≤ k ≤ j; and

• the in-degree of vk in G′ − {v1, . . . , vk−1} satisfies

d−
G′−{v1,...,vk−1}

(vk) =

{

1, if 1 ≤ k ≤ j − 1;

0, if k = j.

In other words, starting from some subpath head s = v1, the procedure builds
a directed path Q in backwards fashion by concatenating an in-neighbor of
vk to the left of vk, for k ≥ 1, whenever the indegree of vk is 1 in the graph
induced by all vertices which have not yet been incorporated to the path.
It carries on iteratively this way until, for some j, the indegree of vj in the
aforementioned graph is either zero, whereupon it adds the path so obtained
to a list of S-bups, or greater than one, whereupon it discards the current
path. The rationale behind it is that a backward bifurcation on vj means
there are two vertices, say u and w, which have not yet been added to the
path, both of which are in-neighbors of vj . Since at most one of them, say u,
may be the tail of a path edge pointing to vj in Q, the other one, w, will be
the tail of a tree edge pointing to vj, which is not acceptable since w will be
to the left of vj in the path. Whichever the case, the algorithm starts anew
with another subpath head s ∈ S until all of them have been considered and
the list of S-bups is fully populated. Finally, it appends each S-bup Q′, one
at each time, to the left of Q (by adding a plausible path edge e /∈ E(G′) from
the rightmost vertex in Q′ to the leftmost vertex in Q) and performs one of
two possible actions:

• if V (Q′) = V (G′) (i.e., if Q′ is a Hamiltonian path of G′), than it adds
the new path Q′||Q to the output list H;

• otherwise, it makes a recursive call to plug next subpath with parame-
ters G′ − V (Q′), Q′||Q, and the output list H.

When all S-bups have been considered, it returns H.
If H is a path, then we indicate the jth element of H (from right to left,

starting at j = 0) by H [j].
The second subroutine invoked by Algorithm 1 is called validate labels,

shown in pseudocode as Algorithm 3. It takes as parameters a watermark
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Algorithm 2 plug next subpath(G′, Q,H)

input: a graph G′, a path Q with V (Q) ∩ V (G′) = ∅,
and an output list H

output: an updated H containing all Q′||Q
where Q is a Hamiltonian path of G′ (plus k ≥ 0 extra edges)
ending at a vertex of degree d ≤ 1 (or d = 0, if Q is empty)

1. Let S ← {s ∈ V (G′) : d+G′(s) = 0}.
if Q 6= ∅ then S ← S ∪ {s ∈ V (G) : d+G′(s) = 1}

2. for each s ∈ S do
v ← s
Q′ ← s
while |N−

G′−(V (Q′)−{v})(v)| = 1 do

v ← the unique element in N−
G′−(V (Q′)−{v})(v)

Q′ ← v||Q′

if |Q′| = |V (G′)| then
H ← H ∪ {Q′||Q}

else if |N−
G′−(V (Q′)−{v})(v)| = 0 then

plug next subpath(G′ − V (Q′), Q′||Q,H)
else discard Q′ // a backward bifurcation was found

G′ (with two missing edges) and a candidate Hamiltonian path H . First, it
determines the set H∗ = E(H) \ E(G′) of the k ≤ 2 plausible path edges
that were required by H . It then checks whether it is possible to obtain a
valid canonical reducible permutation graph G through the insertion of H∗

and some set of 2− k tree edges into G′. It does so by testing the following
necessary conditions, where T denotes the representative tree of G:

(1) vertices H [2n+1] and H [n+1] must be in-neighbors of H [2n+2] in G;

(2) the out-degree of vertices H [2n+ 1], . . . , H [1] must be 2 in G, and the
out-degree of H [2n+ 2] must be 1;

(3) the number of tree edges that would have to be inserted into G so that
the two previous conditions are met must not exceed 2 − |H∗|; and,
finally,
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(4) if vertices H [1] and H [n] are not siblings in T , then vertex H [1] must
be a child of the nth descendant of the root H [2n+ 2] which is a large
vertex (i.e., the nth descendant of the root, counted right to left, among
those whose indexes in H are greater than or equal to n+1); moreover,
the index in H of the rightmost vertex in the preorder traversal of T
must correspond to the number of children of 2n + 2 in T .

The first condition above appears in the definition of both Type-1 and
Type-2 representative trees (Definitions 19 and 20), hence its necessity comes
directly from Theorem 22. The second condition is due to Definition 16
and from the second property in the definition of self-labeling reducible flow
graphs (Definition 10). The third condition obviously comes from the fact
that 2 edges were removed from G, and |H∗| edges have already been (re-
)inserted at this point. Finally, the last condition is due to property (iii)
in the definition of Type-2 representative trees and to Lemma 21. It cer-
tainly applies to Type-2 representative trees only, which is precisely the case
where vertices H [1] and H [n] are not siblings in the representative tree, by
definition. We remark that, if H is indeed the unique Hamiltonian path
of a canonical reducible permutation graph G, then, for all v ∈ V (G), the
canonical label v satisfies v = H [v].

Theorem 24. Algorithm 1 correctly retrieves the original, unique Hamilto-
nian path from a canonical reducible permutation graph on 2n + 3 vertices
from which k ≤ 2 edges were removed. It runs in O(n) time.

The proof of Theorem 24 is somewhat involved and unfortunately de-
mands some case analysis. We therefore postpone it until Section 8.

5.2. Determining the fixed vertex

Suppose the watermark G has been attacked, which resulted in a damaged
watermark G′, where two unknown edges are missing. Now we shall recognize
the fixed vertex of the original watermark, given the damaged one. Getting
to know the fixed vertex of G will play a crucial role in retrieving the missing
tree edges and consequently restoring the original identifier w encoded by G.

We describe some characterizations that lead to an efficient computation
of the fixed vertex f of G. Let T be the representative tree of the original
watermark G. We consider the case where the two edges that have been
removed belong to T . Denote by F the forest obtained from T by the removal
of two edges. First, we consider the case f = 2n + 1.
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Algorithm 3 validate labels(G′, H)

input: a graph G′, with |V (G′)| = 2n+ 3,
and a Hamiltonian path candidate H , with |E(H) \ E(G′)| ≤ 2

output: True, if the labeling of V (G′) implied by H is valid; False, otherwise

1. Label the vertices of G′ in such a way that H = 2n+ 2, 2n+ 1, . . . , 0.
Let H∗ ← E(H) \ E(G′), and insert H∗ into G′ obtaining G′′.
Let also F be the forest obtained from G′′ by the removal of all (path)
edges in H , as well as the isolated vertex 0, and let missing edges ← 0.

2. for each v ∈ {n+ 1, 2n+ 1} do
if (v, 2n+ 2) /∈ E(G′′) then

if d+G′′(v) = 2 then return False
E(G′′)← E(G′′) ∪ {(v, 2n+ 2)}; missing edges += 1

for each v ∈ {1, . . . , 2n+ 1} do
if d+G′′(v) < 2 then missing edges += 1

if missing edges > 2− |H∗| then return False

3. if vertices 1 and n are siblings in F then
Let r be the rightmost vertex in the preorder traversal of F .
if r > d−G′′(2n+ 2) + missing edges then return False
Let x be the length of the unique path from 1 to 2n + 2 in F .
if r + x− 2 6= n then return False

4. return True

Theorem 25. Let F be a forest obtained from the representative tree T by
removing two edges, where n > 2. Then f = 2n + 1 if, and only if,

1. vertex 2n+ 1 is a leaf of F ; and

2. the n small vertices of G′ are children of 2n in F , with the possible
exception of at most two of them, in which case they must be isolated
vertices.

Proof: From Theorem 22, we know that, when f = 2n+1, f is the rightmost
vertex of T , hence a leaf of F , implying the necessity of condition (i). Again
by Theorem 22, the small vertices of T must immediately follow the rightmost
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Figure 4: (a–c) Conditions (i), (ii) and (iii) of Theorem 26, respectively.

cyclic vertex of T , namely 2n. Since two edges have been deleted from T ,
it follows that all small vertices are children of 2n in F , with the possible
exception of at most two of them, which then became isolated vertices, so
condition (ii) is also necessary.

Conversely, suppose conditions (i) and (ii) hold, and assume f 6= 2n+ 1.
Then the second case covered by Theorem 22 applies for T . If f = 2n, we
know from n > 2 that vertex 2n + 1 has at least 3 children in T , making
it impossible for 2n + 1 to become a leaf of F by the removal of only two
edges, therefore contradicting condition (i). If, on the other hand, f < 2n,
then, again by Theorem 22, vertex 2n + 1 cannot have any small children,
contradicting condition (ii). Therefore f > 2n, implying f = 2n+ 1. ✷

Next, we characterize the case f < 2n+1. Figure 4 helps to visualize the
three conditions of the theorem.

Theorem 26. Let F be a forest obtained from the representative tree T of
watermark G by removing two of its edges, and let x ≤ 2n be a large vertex
of T which is not a child of 2n+2. Then x is the fixed vertex f of G if, and
only if,

(i) the large vertex x has a sibling z in F , and x > z; or

(ii) the subset of small vertices Y ′ ⊂ Y , Y ′ = {x−n, x−n+1, . . . , n} can be
partitioned into at most two subsets Y ′

1 , Y
′
2 , such that ∅ 6= Y ′

1 = N+
F (x)

and Y ′
2 is the vertex set of one of the trees which form F ; or, whenever

the previous conditions do not hold,

(iii) the large vertex x is the rightmost vertex of one of the trees of F , while
the rightmost vertices of the remaining trees are all small vertices.
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Proof: For the sufficiency of condition (i), let x be a large vertex of F ,
z a sibling of x in F and xq their parent. By Theorem 22, the only large
vertex of T which is not a child of 2n+ 2 and has some sibling z is precisely
the fixed vertex f . Clearly, the removal of edges of T cannot create new
vertices having this property. Furthermore, xq /∈ {xn, 2n+ 1} implies that f
has a unique sibling xq+1, hence f > xq+1 according to the ascending order
of siblings in F , whereas xq ∈ {xn, 2n + 1} implies every sibling y of f is a
small vertex, hence f > y. Consequently, x = f .

Now suppose condition (ii) holds. First, assume that Y ′
2 = ∅. In this case,

Y ′ = Y ′
1 = {x− n, x− n+ 1, . . . , n} = N∗

F (x). Again, according to Theorem
22, we can locate a unique vertex f fulfilling this property, implying x = f .
In addition, when Y ′

2 6= ∅, we can again select a unique vertex f , where
N∗

F (f) ∪ Y ′
2 = Y ′. Thus, x = f indeed.

Finally, assume neither condition (i) nor condition (ii) hold. Because (i)
is not satisfied, we have that either xq /∈ {xn, 2n + 1}, and the edge from
xq to one of its children has been deleted; or xq ∈ {xn, 2n + 1}, and the
edge (xq, f) has been deleted. Additionally, since (ii) is not satisfied, f must
have a unique child y, and the edge (f, y) has also been removed. Next,
assume that, in such a context, condition (iii) is verified. For the sake of
contradiction, suppose the theorem is false, so that x 6= f . Since x 6= 2n+ 1
and x is not a child of 2n+2, it follows that it must be a descending vertex,
whereupon the fact that x is the rightmost vertex of the tree of F containing
it implies that x is a leaf of F . Now the latter implies that the edge (xq, x)
of T has been removed, where xq is the parent of x in T . Because condition
(i) is not satisfied, at least one edge has been removed from T , and because
condition (ii) is not satisfied, at least one more edge has been deleted from
T . Since no more than two edges overall have been removed, we conclude
that the assumption is false, and therefore, here again, x = f .

Conversely, assume that x is the large vertex of F satisfying x = f . We
prove that condition (i) or condition (ii) holds, otherwise condition (iii) is
satisfied.

Let xq be the parent of x = f in T . If xq has at least two children in
F , then f is larger than its siblings, by Theorem 22, and condition (i) holds.
Alternatively, if f is not a leaf of F , then the set Y ′ = {x−n, x−n+1, . . . , n}
either satisfies Y ′ = N∗

F (f) or it can be split into two subsets Y ′
1 ∪ Y ′

2 = Y ′,
where Y ′

1 = N∗
F (f) and Y ′

2 is the vertex set of one of the trees of F . In this
situation, condition (ii) holds. Assume, next, that neither condition (i) nor
condition (ii) hold. Then the parent xq of f in T has at most one child in F ,
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Algorithm 4 find f (F )

input: a forest F (a representative tree with two missing edges)
output: the fixed element f ≤ 2n+ 1

1. if F contains a large vertex x having a sibling z, then
return f := max{x, z}

2. for each large vertex x of F satisfying NF (x) 6= ∅
for each small y ∈ NF (x)

Y ′ ← {x− n, x− n+ 1, . . . , n}
if (N∗

F (x) = Y ′ or N∗
F (x) ⊂ Y ′) and

(Y ′ \N+
F (x) is the vertex set of a tree of F ) then

return f := x

3. Find the preorder traversals of the 3 trees of F , and let f be the
unique vertex that is both large and the rightmost element of the
preorder traversal of some tree of F .
return f

whereas f has no children. The latter implies that f is the rightmost vertex
of the tree of F containing it. Since xq 6= f , we know that no more than two
edges have been deleted from T , hence no large vertex other than f can be
a leaf of F . Consequently, condition (iii) holds, completing the proof. ✷

The above theorems lead to an algorithm that efficiently finds the fixed
vertex of watermark G (see Algorithm 4). The input is the forest F , obtained
from the representative tree T of G by the removal of two edges. First, the
algorithm checks whether f = 2n + 1. By Theorem 25, it suffices to verify
whether 2n+1 is a leaf of F and all small vertices are children of 2n, except
possibly two, which must be isolated vertices. If this is not the case, then
the algorithm proceeds to determining f knowing that f < 2n+1. Basically,
such task consists in checking conditions (i), (ii) and (iii) of Theorem 26,
which can be done in a straightforward manner.

Steps 1 and 3 can be computed easily in linear time. As for Step 2,
observe that there are at most two large vertices x of F that may satisfy the
condition of having only small children. Consequently, the tests in Step 2
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apply to at most two candidates x, hence the entire algorithm runs in O(n)
time.

5.3. Determining the root’s children

After having identified the fixed vertex of the watermark, we are almost
in a position to determine the tree edges that have been removed.

Observe that, when f = 2n+ 1, the task is trivial, since, in this case, by
Theorem 22, there can be only one canonical reducible permutation graph
G relative to n. Such graph is precisely the one with a Type-1 represen-
tative tree T , which is unique for each n > 2 (cf. Property 3 of canonical
reducible permutation graphs, in Section 3). By definition, the root-free
preorder traversal of a Type-1 representative tree, when f = 2n + 1, is
n+ 1, n+ 2, . . . , 2n, 1, 2, . . . , n, 2n+ 1.

We therefore want to determine the children of 2n + 2 restricted to the
case where f < 2n+ 1. Let G be a watermark, T its representative tree and
F the forest obtained from T by the removal of two edges. As usual, f stands
for the fixed vertex of T , X is the set of large vertices other than 2n + 2,
and Xc = X \ {f}. Finally, denote by A ⊆ Xc the subsets of ascending large
cyclic vertices of T , which we shall refer to simply as the ascending vertices,
and denote by D the set D = Xc \ A of descending large cyclic vertices of
T , or simply the descending vertices. Given the forest F and its fixed vertex
f , Algorithm 5 computes the set A, which, as we recall from the proof of
Theorem 22, corresponds precisely to the children of the root 2n+ 2.

It is easy to conclude that the above algorithm can be implemented in
O(n) time. Now we prove its correctness.

Theorem 27. Algorithm 5 correctly computes the set of ascending vertices
A of T .

Proof: We follow the different conditions that are checked by the algorithm.
Assume F [Xc] ∪ {2n + 2} is connected. Then NT (2n + 2) = NF (2n + 2),
implying A = NF (2n+2). The algorithm is therefore correct if it terminates
at Step 1.

Assume F [Xc] ∪ {2n + 2} is disconnected, but has no isolated vertices.
Then either NF (2n + 2) = NF (2n + 2) or the edge (2n+ 2, 2n + 1) was one
of those that might have been removed from T . In any of these situations,
we can write A = NF (2n + 2) ∪ 2n+ 1, implying that the algorithm is also
correct if it terminates at Step 2.
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Algorithm 5 find ascending large vertices(F )

input: a forest F (a representative tree with two missing edges)
output: the children A of the root 2n+ 2 of the representative tree

1. if F [Xc] ∪ 2n + 2 is connected then
return A := NF (2n+ 2)

2. if F [Xc] ∪ 2n + 2 contains no isolated vertices then
return A := NF (2n+ 2) ∪ 2n+ 1

3. if F [Xc] ∪ 2n + 2 contains two isolated vertices x, x′ then
return A := NF (2n+ 2) ∪ {x, x′}

4. if F [Xc] ∪ 2n + 2 contains a unique isolated vertex x then
if |N∗

F (f)| = 2n− f + 1 then
let yr be the rightmost vertex of N∗

F (f)
if |NF (2n+ 2)| < yr then

return A := NF (2n+ 2) ∪ {x, 2n+ 1}
else

return A := NF (2n+ 2)
else

return A := NF (2n+ 2) ∪ {x}

Assume F [Xc]∪{2n+2} contains two distinct isolated vertices x, x′. The
only possibility is x, x′ ∈ NT (2n+2). So, the action of constructing A as the
union of x, x′ and NF (2n + 2) assures correctness, whenever the algorithm
terminates at Step 3.

The last situation is F [Xc]∪{2n+2} containing a unique isolated vertex
x. We consider the following alternatives. If |N+

F (f)| = 2n− f +1, it implies
that N∗

T (f) = N∗
F (f), because the set of descendants of f in T comprises

exactly yf0, yf0+1, . . . , yn, The number of such descendants of f is therefore
n−f0+1, which, by Property 3 of canonical reducible permutation graphs, is
equal to 2n− f +1. Now, by Theorem 22, |NT (2n+2)| = yr, where yr is the
rightmost vertex of N∗

F (f). In this situation, |NF (2n+ 2)| < yr implies that
x necessarily belongs to NF (2n+2). In addition, edge (2n+2, 2n+1) might
also have been deleted from T , since a single edge deletion suffices to turn
x into an isolated vertex. Observe, on the other hand, that isolating a large
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vertex which is not a child of 2n+2 requires the removal of at least two edges,
provided n > 2. Thus, A = NF (2n + 2) ∪ {x, 2n + 1}, and the algorithm is
correct. In case |NF (2n+ 2)| = yr, we know that NT (2n+ 2) = NF (2n+ 2),
hence A = NF (2n + 2), ensuring the correctness of the algorithm. Finally,
when |N∗

F (f)| 6= 2n− f +1, it means some edge inside the subtree rooted at
f has been deleted from T . In this case, the isolated vertex x is necessarily
a child of 2n+ 2 in T , implying A = NF (2n+ 2)∪ {x}, and the algorithm is
correct. ✷

5.4. Retrieving the missing edges

Once we know the set of ascending vertices, it is simple to restore the
entire tree T . Basically, given sets A and Xc, we obtain the set of D of
descending vertices. Then, by sorting A and D accordingly, we can locate all
the large cyclic vertices in T , using the model given by Theorem 22. We then
place f in T , such that its parent xq is smallest cyclic vertex that is larger
than f . Finally, we place the small vertices. Vertices {1, 2, . . . , f−n−1} are
all children of xn. The remaining small vertices {f − n, f − n+1, . . . , n} are
descendants of f and their exact position in T can be obtained as follows.
For each y ∈ {f − n, f − n + 1, . . . , n}, we find its position in the preorder
traversal P of T by determining the large vertex x whose position in the
bitonic sequence of the cyclic large vertices is exactly y. Then y must be the
xth vertex in the root-free preorder traversal of T . Finally, the position of f
in P is clearly equal to f .

The details are given in Algorithm 6, which computes the preorder traver-
sal P of T \ 2n+ 2.

Again, it is straightforward to conclude that Algorithm 6 correctly com-
putes the preorder traversal of T in time O(n). Such procedure assures the
complete retrieval of T and therefore we are able to restore the watermark
G in full.

5.5. A new decoding algorithm

We can now formulate our new decoding algorithm. If the input water-
mark presents k ≤ 2 missing edges, the algorithm is able to fix it prior to
running the decoding step. The decoding step itself is absolutely straightfor-
ward, and relies on the following theorem.
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Algorithm 6 retrieve preorder traversal(T, f, A,Xc)

input: the fixed vertex f , the set A of ascending vertices,
and the set Xc of large cyclic vertices
in a representative tree T

output: the preorder traversal P of T

1. Let D ← Xc \ A.

2. The initial vertices of P are those of A in ascending order,
followed by those of D, in descending order.
Now, subsequently place in P the small vertices 1, . . . , f − n− 1,
in this exact order, immediately after the last descending
vertex xn ∈ D. Then place f as to immediately follow f − n− 1.

3. For each small vertex y ∈ {f − n, f − n + 1, . . . , n},
let P [y] be the (large) vertex x whose index in P is y,
and place y at position x in P , i.e., satisfying P [x] = y.

4. return P

Theorem 28. Let ω be a given identifier and G the watermark corresponding
to ω. Let A = x1, . . . , xℓ−1 be the ascending sequence of children of 2n + 2,
in the representative tree T of G, that are different from 2n+ 1. Then

ω =

ℓ−1
∑

i=1

22n−xi.

Proof: The children of 2n+2 in T are the vertices xi ofG which are the tail of
some tree edge ofG pointing to 2n+2. From Property 8 of canonical reducible
permutation graphs, such vertices xi 6= 2n + 1 are precisely those satisfying
xi = n+ zi, where zi is the index of a digit 1 in the binary representation B
of ω. The summation yielding ω can now be easily checked, since the relative
value of a digit 1 placed at position zi is 2

n−zi = 2n−(xi−n) = 22n−xi. ✷

As a consequence of the above theorem, whenever the input watermark
has not been tampered with, the proposed Algorithm 7 is able to retrieve
the encoded identifier in a very simple way. Note that, in this case, it is not
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Algorithm 7 decode(G)

input: a watermark G with 2n+ 3 vertices and 0 ≤ k ≤ 2 missing edges
output: the identifier ω encoded by G

1. Let k ← |E(G)| − (4n+ 3).

2. If k > 2, report the occurrence of k edge removals and halt.

3. If 0 < k ≤ 2, proceed to the reconstitution of the watermark
(see Section 5, Algorithms 1–6).

4. Calculate and return the identifier ω as indicated by Theorem 28.

even necessary to obtain the representative tree of the watermark, since the
set A can be determined as A = N−

G (2n + 2).

Theorem 29. Algorithm 7 retrieves the correct identifier, encoded in a wa-
termark with up to two missing edges, in linear time.

Proof: Since the final step of the algorithm clearly runs in linear time, its
overall time complexity relies on the fact that Algorithms 1–6 run in lin-
ear time themselves, as proved earlier in the text. The correctness of the
algorithm follows from the fact that those procedures guarantee the recon-
struction of the original watermark when k ≤ 2 edges have been removed,
and from the correctness of Theorem 28. ✷

Corollary 30. Distortive attacks in the form of k edge modifications (in-
sertions/deletions) against canonical reducible permutation graphs G, with
|V (G)| = 2n + 3, n > 2, can be detected in polynomial time, if k ≤ 5, and
also recovered from, if k ≤ 2. Such bounds are tight.

Proof: From Theorem 29, we know that, for n > 2, there are no two
watermarks G1, G2, with |V (G1)| = |V (G2)| = 2n + 3, such that |E(G1) \
E(G2)| ≤ 2, otherwise it would not always be possible to recover from the
removal of up to two edges. Thus, for n > 2, any two canonical permutation
graphs G1, G2 satisfy

|E(G1) \ E(G2)| = |E(G2) \ E(G1)| ≥ 3, (1)
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hence G1 cannot be transformed into G2 by less than 6 edge modifica-
tions. Since the class of canonical permutation graphs can be recognized
in polynomial-time in light of the characterization given in Theorem 22, and
since any number k ≤ 5 of edge modifications made to a graph G of the class
produces a graph G′ that does not belong to the class, all distortive attacks
of such magnitude (k ≤ 5) can be detected. Now, for k = 2, we have three
possibilities:

(i) two edges were removed;

(ii) two edges were inserted;

(iii) one edge was removed and one edge was inserted.

If case (i) applies, Theorem 29 guarantees that the original graph can be
successfully restored. If case (ii) or case (iii) apply, then a simple algorithm
in which all possible sets of two edge modifications are attempted against
the damaged graph G′ suffices to prove that the original graph G can be
restored in polynomial time, since, as we already know, exactly one such set
shall turn G′ into a canonical reducible permutation graph. The case k = 1
is simpler and can be tackled in analogous manner.

It remains to show that such bounds are tight. We present a pair of canon-
ical permutation graphs G1, G2, with |V (G1)| = |V (G2)| = 2n + 3, n > 2,
such that inequation (1) holds with equality. We remark that there are many
such pairs, and the following is but an example. Let G1, G2 be the water-
marks relative to identifiers ω1 = 8, ω2 = 9, respectively. Their edge sets
are such that E(G1) \ {(2, 3), (7, 8), (8, 9)} = E(G2) \ {(2, 4), (7, 9), (8, 10)},
completing the proof. ✷

6. Polynomial-time decoding (k missing edges)

The linear-time recognition of the class of canonical reducible permutation
graphs, wrapped up in the form of Corollary 4, allows the construction of a
polynomial-time algorithm to recover watermarks which have been deprived
of k edges, for arbitrary values of k. The proposed algorithm is formally
robust [18], since it manages to repair a damaged watermark G′ whenever
such a thing is possible; otherwise, rather than producing a misled result, it
shows that G′ does not belong to the family of damaged watermarks that
can possibly be recovered. As a certificate for this latter case, it outputs two
or more watermarks that may become isomorphic to G′ through the removal
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of exactly k of their edges, thus proving that the intended restore is not at
all possible.

Let G be a watermark and G′ the graph obtained from G when a certain
subset of k edges are removed. The idea is simple. The algorithm attempts
the addition to E(G′) of each and every k-subset of non-edges of G′, one
subset at a time. After each attempt, it checks whether a valid watermark
(i.e., a canonical reducible permutation graph) was produced. If, after trying
all subsets, only one graph was recognized as such, then the decoding was
successful. Otherwise, it displays a set containing all watermark candidates.

Since |V (G′)| = 2n+3 and |E(G′)| = 4n+3−k, the number of k-subsets
of non-edges of G′ is

(
(

2n+3
2

)

− (4n+ 3− k)

k

)

= O(n2k).

Thus, considering the effort of running the recognition algorithm for each one
of these watermark candidates, the algorithm runs in overall O(n2k) ·O(n) =
O(n2k+1) time.

The aforementioned formulation considers that all non-edges of G′ could
be an edge of the original watermark. However, owing to the particular
structure of canonical reducible permutation graphs, relatively few among
those non-edges do really stand a chance of belonging to G. More precisely,
every vertex v of G has out-degree at most 2, hence v must be the tail
endpoint of a most 2− |N+

G′(v)| edges. The multiset M∗ of all candidates to
being the tail of a missing edge has therefore

|M ∗ | =
∑

v∈V (G′)

(

2− |N+
G′(v)|

)

= 2 · |V (G′)| −
∑

v∈V (G′)

|N+
G′(v)|

= 2 · |V (G′)| − |E(G′)|

= 2 · (2n+ 3)− (4n+ 3− k)

= k + 3

elements (not necessarily distinct), and therefore the k missing edge tails
may be chosen in

(

|M∗|
k

)

= O(k3) different ways. For each k-subset of M∗,
the algorithm must choose the head corresponding to each tail, which can
be done in O(n) ways per edge, for an overall O(k3nk) number of k-subsets
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of non-edges that shall be tentatively added to G′. With the O(n) running
time of the recognition algorithm for each such attempt, we complexity of
the whole decoding algorithm is an overall O(k3nk+1).

As a matter of fact, it is still possible to cut a wholeO(k3) factor from that
asymptotical complexity, if the labels of the vertices are known. To assume
that the labels are known is reasonable in many situations, since each vertex
corresponds to a block in the CFG of the software, and, by construction,
the watermark graph possesses a Hamiltonian path 2n+2, 2n+1, . . . , 0 that
corresponds, in the CFG, to a chunk of subsequent blocks. If that is the case,
then we know the out-degree, in G, of all watermark vertices (the tail and the
head of the Hamiltonian path have out-degrees 1 and 0, respectively; all other
vertices have out-degree 2) and, consequently, the tails of all missing edges.
By running the linear-time recognition algorithm on each possible choice of
heads, the decoding algorithm has an overall O(nk+1) time complexity.

7. Proofs of the properties from Section 3

We had postponed the proofs of the properties stated in Section 3 to
avoid an overhead of technical pages too early in the paper. We now present
the full proofs.

Proof of Property 1. When read from right to left, the n rightmost elements
in Pb correspond to the n first elements in Z1, i.e the n first indexes, in B∗,
where a digit 1 is located. Since B∗ starts with a sequence of n contiguous
1’s, the property ensues. ✷

Proof of Property 2. In B∗, digits with indexes 1, 2, . . . , n are all 1, by
construction. Since the n rightmost elements in Pb (i.e., elements indexed
n+ 2 ≤ i ≤ n∗ in Pb) correspond to the first n elements in Y , and therefore
to the first n indexes of 1’s in B∗, those will always be precisely the elements
of set S = {1, 2, . . . , n}. In other words, if s ∈ S, then s will have index
n∗ − s + 1 > n + 1 in Pb. By the time the elements of Pb are gathered to-
gether in pairs with views to defining their placement in Ps, element s will
be paired with element q whose index is n∗ − (n∗ − s + 1) + 1 = s. Because
s ≤ n, such q clearly does not belong to S, hence q > n. Now, because s
will be assigned index q in Ps, the element with index s in Ps will be its pair
q > n, concluding the proof. ✷
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Proof of Property 3. The bitonic permutation Pb is assembled in such a way
that its (n+ 1)th element f = bn+1 is either:

(i) the (n+ 1)th element of Z0, in case B∗ has at least n + 1 digits 0; or

(ii) the (n+ 1)th element of Z1, otherwise.

By construction, the number of 0’s in B∗ is one unit greater than the
number of 1’s in B.

If (i) holds, then B corresponds to an identifier w that is the predecessor
of a power of 2, implying all n digits of B are 1’s. If that is the case, then
the desired property follows immediately, once the (n + 1)th element of Z0

will be the index of the (n+1)th — i.e., the last — digit 0 in B∗. Such index
is, by construction, n∗.

If (ii) holds, then f is the index of the (n + 1)th digit 1 in B∗. By
construction, the n first digits 1 in B∗ occupy positions with indexes 1, . . . , n,
and the (n + 1)th digit 1 in B∗ corresponds to the first digit 1 in the one’s
complement of B. Since that digit has index f0 in the one’s complement of
B, and there are in B∗ exactly n digits to the left of the one’s complement
of B, the property follows. ✷

Proof of Property 4. From the construction of Ps and Property 1, it follows
that the elements that occupy positions with indexes 1, 2, . . . , n in Ps are the
first n elements in Pb. It just occurs that the first n1 + 1 numbers in Pb are
the elements of Z0, i.e., the indexes of 0’s in B∗. Now, the last digit in B∗

— the one indexed n∗ — is always a 0. Besides that 0, the other digits 0 in
B∗ have indexes z = n + d, where each d is the index of a digit 1 in B (the
original binary representation of the identifier ω). While the first digit in B
is always 1, it is also true that:

(i) the f0−1 first digits in B constitute a seamless sequence of 1’s, in case
there is at least one 0 in B; or

(ii) all n digits of B are 1’s, in which case ω is the predecessor of a power
of 2.

Whichever the case, Property 3 allows us to state that there is a sequence of
f − n − 1 digits 1 in B starting at the first digit of B. Such sequence will
show up, in B∗, starting at index n + 1, in such a way that the f − n − 1
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first elements of Z0 will be n + 1, n+ 2, . . . , n + (f − n− 1) = f − 1. Those
elements, as we have seen, will be precisely the first numbers in Pb. Because
there are no more than n such elements, they will be paired against elements
1, 2, . . . , f − n− 1 ≤ n (located from the right end of Pb leftwards) in order
to determine their placement in Ps, and the property follows. ✷

Proof of Property 5. If the identifier ω is not the predecessor of a power of
2, then its binary representation B, whose first digit is always a 1, contains
some digit 0. In light of this, Property 3 implies f ≥ n + 2 for all integers
ω, and the first equality now follows from Property 4. The second equality
is granted by the self-invertibility of Ps, whereby sj = u ⇐⇒ su = j. ✷

Proof of Property 6. First, note that f 6= n∗ corresponds to the case where
the identifier ω is not the predecessor of a power of 2, i.e., n1 < n. Because
the sequence Z0 has exactly n1 + 1 elements, the last of which being the
index n∗ of the rightmost digit in B∗, element n∗ will always be assigned
index n1 + 1 in Pb. As we have seen in the proof of Property 4, for i ≤ n,
the ith element in Pb will also be the ith element in Ps, for it will be paired
against element i, indexed n∗− i+1 in Pb (due to the starting sequence of n
digits 1 in B∗). That being said, element n∗, indexed n1 + 1 ≤ n in Pb, will
have index n1 + 1 in Ps as well. If f = n∗, then the definition of f verifies
the property trivially. ✷

Proof of Property 7. We employ again the fact, noted for the first time in the
proof of Property 4, that the subsequence consisting of the first n elements
in Ps and the subsequence consisting of the first n elements in Pb are one
and the same. Since Pb is bitonic, whatever subsequence of Pb is bitonic too,
particularly the one containing its first n elements. By Property 5, the central
element sn+1 of Ps is always equal to 1, therefore the bitonic property of the
subsequence consisting of the leftmost elements of Ps will not be broken after
its length has grown from n to n+1, that is, after element sn+1 = 1 has been
appended to it. ✷
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Proof of Property 8. The first n1 + 1 elements of the bitonic permutation Pb

are the elements of Z0, corresponding to the indexes of 0’s in the extended
binary B∗ (which consists, we recall, of n digits 1, followed by the one’s
complement of the binary representation B of the identifier ω encoded by G,
followed by a single digit 0). Those elements constitute the ascending prefix
A = n + z1, n + z2, . . . , n + zn1

, 2n + 1, where, for i ∈ {1, . . . , n1}, zi is the
index of a digit 1 in B. From the proof of Property 4, we know that, for
i ≤ n, the ith element in Pb will also be the ith element in the self-inverting
permutation Ps. Since n1 ≤ n, we have that the n1 first elements of Ps are
precisely the n1 first elements of A, hence the tree edge tailed at each of those
elements must point, by construction, to 2n+ 2. It remains to show that no
element u /∈ A ∪ {2n + 1} is the tail of a tree edge pointing to 2n + 2. But
this comes easily from the fact that, by Property 6, the (n1+1)th element in
Ps is 2n + 1. Since all vertices u with indexes i > n1 + 1 in Ps are certainly
smaller than 2n+1, they can only be the tail of tree edges pointing to vertices
q(u) ≤ 2n+ 1, and the proof is complete. ✷

Proof of Property 9. Both items are trivially verified, since, by construction,
every tree edge (u, k) ∈ G is such that either k > u is the element that is
closest to u and to the left of u in Ps, or k = 2n + 2. ✷

8. Proof of Theorem 24

Let Gk be the set of all canonical reducible permutation graphs with k
edges missing. When an element G′ of Gk is the input of plug next subpath
(G′, ∅,H), its output is clearly a Hamiltonian path of some graph G such
that V (G) = V (G′) and E(G) E(G′) ≤ k. Thus, when a canonical reducible
permutation G minus two edges is passed to Algorithm 1, the path H it
returns is the Hamiltonian path of some element of G2. We claim such graph
can be no other but G.

Let Ĥ = 2n+ 2, 2n+ 1, . . . , 0 be the unique Hamiltonian path of G. We
divide the proof in three cases:

(i) the removed edges were both tree edges of G;

(ii) the removed edges were both path edges of G;

(iii) the removed edges were one tree edge and one path edge of G.
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Figure 5: Possible scenarios for the Hamiltonian path H of a damaged watermark G′.
Dashed arrows indicate missing edges. Squares, solid circles and hollow circles represent
vertices whose out-degrees in G′ are, respectively, 0, 1 and 2. Three hollow circles close
together followed by a broken arrow (with a tilde in the middle) indicate subpaths of zero
or more edges. Each big rectangle encloses a maximal undamaged subpath of H , which
corresponds to a maximal backward-unbifurcated path to s ∈ V (G), i.e., an {s}-bup.

When two tree edges are missing. The easiest case is (i), as illustrated in
Figure 5(a). If only tree edges were removed, then the Hamiltonian path
of G is undamaged. Starting from the only vertex with out-degree zero in
G′, namely vertex 0, plug next subpath(G′, ∅,H) outputs Ĥ at once, never
making a single recursive call. Since Ĥ obviously produces the correct label-
ing of vertices of G, it is validated uneventfully by validate labels(G′, Ĥ) and
returned by the algorithm.

When two path edges are missing. Suppose now that (ii) is the case. Since
no tree edges were removed, the only vertex with out-degree zero in G′ is
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vertex 0, unless the path edge whose tail is 2n + 2 was one of the removed
edges (we recall that 2n + 2 has degree 1 in G). We therefore analyze two
subcases, according to whether or not (2n + 2, 2n + 1) was removed from
E(G).

For the first subcase, suppose the removed path edges were (2n+2, 2n+1)
and (a, a− 1) for some a ≥ 1, as in Figure 5(b). Although vertex 2n+ 2 has
degree zero, its in-degree is greater than 1 in G′ \ ∅ = G′, and therefore no
{2n + 2}-bup is produced in the main call to plug next subpath. Thus, the
only partial path the algorithm produces, starting from vertex 0 in backwards
fashion, is Q′ = a− 1, a− 2, . . . , 0. Because now a− 1 has no in-neighbors in
G − V (Q′), it recurses to find possible extensions for Q′. The only vertices
with degree 0 or 1 in G′ \ V (Q′) are now 2n + 2 and a. However, any
{2n + 2}-bup Q′′ that may be found will constitute an H = Q′′||Q path
that will necessarily fail the ensuing validation. This is due to the fact that
H [2n+2] will be a vertex other than Ĥ [2n+2] = 2n+2, an out-neighbor of
n+1 by Theorem 22—and the first condition tested by validate labels(G′, H)
cannot be met. Because of this, the partial path Q′ can only be extended
by an {a}-bup, which can be no other but 2n + 1, . . . , a, and the remaining
vertex 2n+2 will be concatenated during the next recursive call, completing
the Hamiltonian path 2n+ 2, 2n+ 1, . . . , a, a− 1, . . . , 0 = Ĥ, as desired.

The second subcase is the one in which the path edge (2n+2, 2n+1) was
not removed. Suppose the missing path edges are (a, a−1) and (b, b−1), with
a < b, as illustrated in Figure 5(b). The first, rightmost subpath located by
the algorithm can only be the unique {0}-bup, namely Q′ = a−1, a−2, . . . , 0.
Now there are three vertices whose degree are less than or equal to one:
2n+ 2, b and a.

When the algorithm considers {2n+ 2}-bups during the recursive call to
plug next subpath(G′−V (Q′), Q′||∅,H), whichever ensuing Hamiltonian path
candidate H it produces will necessarily be discarded. Indeed, if n + 1 ≥ a,
then no bup is even produced because the in-degree of 2n+ 2 in G′ − V (Q′)
is at least 2 by the existence of tree edges (n+1, 2n+2) and (2n+1, 2n+2);
and, if n + 1 < a, then H [n + 1] is vertex Ĥ [n + 1] = n + 1 itself and,
because its out-degree in G′ is already 2, conditions (1) and (2) checked by
validate labels(G′, H) cannot both be met.

When the algorithm considers a {b}-bup, whichever ensuing Hamiltonian
path candidate H it comes up with will also be discarded. Indeed, because
the subpath 2n+2, 2n+1, . . . , b of Ĥ is intact, vertex 2n+2 will be brought
into the {b}-bup before v does, for all b−1 ≥ v ≥ a, hence H [2n+2] 6= 2n+2.
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Moreover, because in particular the tree edge whose tail is b−1, say (b−1, w),
was not removed, and w ≥ b, the only possible value for w is 2n+2, otherwise
there would be a vertex z ∈ {2n + 1, 2n, . . . , b} with in-degree greater than
1 in the subgraph of G′ induced by z and by the vertices to the left of z in
H , which is a contradiction because such path would have been discarded in
the last line of Algorithm 2. Thus, vertex b − 1 is an in-neighbor of 2n + 2
which was not added to the path before 2n + 2 was added. If a backward
bifurcation has not arisen, then it is only possible that b − 1 is precisely
the vertex to the left of 2n + 2 in H . Repeating the same argument—
based on the fact that the tree edge whose tail is v has not been removed—
for all b − 2 ≥ v ≥ a, we can infer that the only possible Hamiltonian
path candidate produced by the concatenation of a {b}-bup to the left of
Q′ is H = a, a + 1, . . . , b − 1, 2n + 2, 2n + 1, . . . , b, a − 1, a − 2, . . . 0. Now,
condition (1) in validate labels enforces that H [n + 1] is the tail of a tree
edge pointing to H [2n + 2] = a. However, because H [n + 1] > a, such edge
cannot be an actual tree edge of the original graph G, hence it must be a
path edge. Since the only path edge with head a in G is a + 1, it follows
that H [n + 1] = a + 1. And here we shall have a contradiction, since a + 1
is the second vertex, left to right, in H (i.e., H [2n + 1] = n + 1), unless
a = b − 1. However, if a = b − 1, then H [n + 1] = b, and the existence of
edge (b, a) = (H [n + 1], H [2n+ 2]) is necessary to meet condition (1) in the
validation procedure. But (b, a) = (b, b − 1) is one of the removed edges,
therefore it must be reinserted. Condition (2), on its turn, requires that an
outgoing edge is added to 2n+ 2 (whose degree is 1 and whose index i in H
satisfies 2n+1 ≥ i ≥ 1). Along with the plausible path edge (b, a−1), which
was required to concatenate the {b}-bup to the left of Q′, we have a total of
3 new edges, thus violating condition (3).

Finally, when the algorithm considers {a}-bups, it necessarily produces
the subpath Q′′ = b − 1, . . . , a, which is concatenated to Q′, and, because
{2n+2}-bups cannot possibly yield a valid prefix to Q′′||Q′, the last recursive
can only produce the {b}-bup 2n+ 2, . . . , b, which completes the reconstitu-
tion of Ĥ .

When a tree edge and a path edge are missing. We focus on the the final
case (iii), where one path edge and one tree edge were removed. We now
consider three subcases separately. In the first one, both the path edge and
the tree edge that were removed share the same tail endpoint. In the second
one, the tails of the removed edges are distinct. The third case is actually
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a special case of the second one, when the tail of the removed path edge is
vertex 2n+ 2.

For the first subcase, illustrated in Figure 5(d), say both removed edges
have tail a ∈ V (G′). In this case, vertex a presents degree zero, just like
vertex 0 itself. Any attempts to build a Hamiltonian path H whose suffix is
an {a}-bup, however, shall not succeed. Since vertex 2n+ 2 will be brought
into H before vertex 0 does, and because a will be the rightmost vertex in H
(i.e., H [0] = a), a tree edge leaving 2n+2 is necessary to satisfy condition (2)
of validate labels(G′, H). But vertex 0 appears with index i > 0 in H , and
therefore a plausible path edge must be inserted with 0 as its tail. If the
index of 0 is not 2n+2, then a tree edge leaving 0 is also called for. If, on the
other hand, the index of 0 is 2n+2, then, among the two tree edges reaching
H [2n+2] = 0 that are required by condition (1) of the validation procedure,
at least one of them is still missing. In both cases, condition (3) is violated.

The second case is the one depicted in Figure 5(e), where a path edge
(a, a − 1), with 1 < a ≤ 2n + 1, and a tree edge (b, v), with v > b,
were removed. Procedure plug next subpath starts by gathering the maxi-
mal backward-unbifurcated path Q′ whose head is 0, the only vertex with
degree zero in G′. The leftmost vertex of such {0}-bup is vertex a − 1, the
first vertex whose in-degree is zero in the subgraph of G′ induced by ver-
tices not in Q′, and hence Q′ = a − 1, a− 2, . . . , 0. Now three vertices have
out-degree less than or equal to one: 2n+ 2, b and a.

When the algorithm picks 2n+ 2 as a possible continuation of the back-
ward path under construction, the index of 2n + 2 in H will be a. By
Theorem 22, vertex 2n + 1 is always a child of the root 2n + 2 in the rep-
resentative tree T of a canonical reducible permutation graph G, and, by
Property 8, the number of children v ≤ 2n of 2n + 2 in T corresponds to
the number n1 of digits 1 in the binary representation B of the identifier ω
encoded by G. As a consequence, the in-degree of 2n + 2 in G is n1 + 1.
We now tackle two distinct situations. In the first one, a ≤ n + 1, whereas
in the second one a > n + 1. If a ≤ n + 1, then the in-degree of 2n + 2 in
G′ − V (Q′) is the same as in G′ (i.e., n1), since all in-neighbors of 2n + 2
belong to {n+ 1, . . . , 2n+ 1} by the same Theorem 22. Because, along with
the path edge (a, a − 1), only one tree edge was removed from G to obtain
G′, the indegree of 2n+2 in G′ is at least n1+1−1 = n1. As a consequence,
a backward bifurcation would be noticed on 2n+2 unless n1 = 1 and the tail
b of the removed tree edge is one of the in-neighbors of 2n+ 2, which in this
case are n+1 and 2n+1. If b = n+1, then the tree edge e = (2n+1, 2n+2)
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is intact, and the only possible placement of vertex 2n + 1 in H is at the
position immediately to the left of 2n+2, so that e functions as a path edge
of H . Assuming there was no backward bifurcation on 2n+ 2 (which would
have caused the path H to be discarded), the only possible tree edge leaving
2n is (2n, 2n + 1), hence 2n must be placed to the left of 2n + 1 in H . As-
suming, similarly, that no backward bifurcation occurred on 2n+1, the only
possible tree edge leaving 2n − 1 is (2n − 1, 2n), and so on. This reasoning
must continue until finally a is concatenated at the very first position of H ,
yielding H = a, a+1, . . . , 2n+2, a−1, a−2, . . . , 0. Now, condition (1) of the
validation procedure requires that H [n+1] and H [2n+1] are in-neighbors of
H [2n+ 2] = a. However, this requirement and condition (2) cannot both be
met without violating condition (3), because, since those two vertices H [n+1]
and H [2n + 1] are not in Q′, they are certainly greater than a, but there is
only one vertex in G which is greater than a and is an in-neighbor of a,
namely a+1. Therefore an extra tree edge is required, but one extra edge is
also required by condition (2)—a tree edge leaving b—and the plausible path
edge (2n + 2, a − 1) had already been inserted, which breaks condition (3).
We are left with the possibility that the tail of the removed tree edge was
b = 2n+1. In this case, the tree edge (n+1, 2n+2) is intact, and the vertex
immediately to the left of 2n+ 2 in H must be n+ 1. Now, since path edge
(n + 2, n + 1) is not the missing one by hypothesis, vertex n + 2 must be
immediately to the left of n+1 in H , and, since path edge (n+3, n+2) is not
the missing one, vertex n + 3 must appear immediately to the left of n + 2,
and so on, until b = 2n+1 is concatenated at the first position of H , yielding
H = 2n + 1, 2n, . . . , a, 2n + 2, a− 1, a− 2, . . . , 0. To satisfy condition (1) of
the validation, vertex H [n+1] must be an in-neighbor of H [2n+2] = 2n+1.
But, because n1 = 1 (ω is a power of 2), the root of its Type-2 representative
tree has only two children, which allows item (iii) in Definition 20 to assure
that 2n + 1 has only one child, and this child is not n + 1, by item (i) of
that same definition. Thus, the tree edge (H [n + 1], 2n+ 1) must be added
to satisfy condition (1) of validate labels(G′, H), and the only vertices with
out-degree 1 in G′ were b, which is 2n + 1 itself, 2n + 2, which was already
added a plausible path edge connecting it to a − 1, and a. It is therefore
only possible that H [n+ 1] = a, that is, the missing path edge is necessarily
(n+1, n). And here is where condition (4) of the validation procedure comes
into play, enforcing that the root H [2n+ 2] presents only two children when
ω is a power of 2. Since that is not the case for the path H so obtained,
as can be easily checked, H is discarded. The second situation is the one in
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which a > n + 1. This one is easy, since now H [n + 1] = n + 1, which is
the tail of a tree edge pointing to 2n+ 2 6= H [2n+ 2], and hence conditions
(1) and (2) of the validation cannot both be met, unless such tree edge is
precisely the one tree edge that was removed. But that would correspond to
the subcase shown in Figure 5(d), which we already tackled.

When the algorithm picks b as the head of the first subpath to extend
the {0}-bup Q′, all ensuing Hamiltonian path candidates shall be discarded
by similar reasons.

Finally, when it considers the sound continuation a, all conditions obvi-
ously pass and Ĥ is delivered.

The third—and last—possible situation is the one depicted in Figure 5(f),
where the removed edges were the path edge (2n+2, 2n+1) and a tree edge
(b, v), with v > b. There are two vertices with degree zero: 0 and 2n + 2.
When the call to plug next subpath(G′, ∅,H}) picks 2n + 2 as the rightmost
vertex of Q′, the leftmost vertex of whatever Hamiltonian path H it produces
must be either 0 or b, the only vertices with out-degree less than 2 in G′ (part
of the second condition verified by validate labels). Moreover, the root of the
representative tree of G must have only two children (which means n1 = 1,
or, equivalently, the identifier ω encoded by G is a power of 2), and b must be
either 2n+1 or n+1, so that a backward bifurcation does not take place at
the very starting vertex H [0] = 2n+ 2. If H [2n+ 2] = 0, then at least three
extra edges are required to put H together and satisfy condition (1) of the
validation procedure: a plausible path edge (H [2n+2], H [2n+1]), and at least
two tree edges, namely (H [2n+1], H [2n+2]) and (H [n+1], H [2n+2]). But
then, of course, condition (3) is violated. If H [2n+ 2] = b = n+ 1, then the
vertex immediately to the left of H [0] = 2n+2 in H must be H [1] = 2n+1,
and the next vertex right-to-left must be H [2] = 2n and so on, assuming
no backward bifurcations took place, until at least vertex H [n] = n + 2. To
put it differently, the {2n + 2}-bup Q′ considered initially by the algorithm
contains (not necessarily properly, depending on whether there was a tree
edge pointing to n+2 in G′) the suffix Q′ = n+2, n+3, . . . 2n+2. Now, no
matter which vertex w occupies the (n + 1)th position (right-to-left) in H ,
it was certainly not an in-neighbor of H [2n+ 2] = n+ 1, because n+ 1 does
not have in-neighbors in Type-2 trees (and in Type-1 trees neither, for that
matter). If w 6= 0, then w has out-degree 2, and conditions (1) and (2) of the
validation procedure cannot both be met. If, on the other hand, w = 0, then
H is the concatenation of Q′ with the prefix n + 1, n, n− 1, . . . , 0, an intact
subpath of Ĥ . In this case, vertex H [2n + 1] is n, a vertex with out-degree
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Figure 6: (a) The watermark G1 for identifier ω = 2; (b) its representative tree T1; (c)
the damaged representative tree T ′

1
obtained from T1 by removing edges (1, 5) and (4, 5);

(d) the watermark G2 for identifier ω = 3; (e) its representative tree T2; (f) the damaged
representative tree T ′

2
obtained from T2 by removing edges (1, 4) and (4, 6). Note that T ′

1

and T ′

2
are isomorphic.

2 in G′ which is not an in-neighbor of H [2n+ 2] = n+ 1, and conditions (1)
and (2), again, cannot both be met.

The verification of the time complexity is straightforward. ✷

9. Final considerations

After characterizing the class of canonical reducible permutation graphs,
we formulated a linear-time algorithm which succeeds in retrieving n-bit iden-
tifiers encoded by such graphs (with n > 2) even if k ≤ 2 edges are missing.
Furthermore, we presented a polynomial-time algorithm to decode Chroni
and Nikolopoulos’s watermarks [5] with an arbitrary number of missing edges
whenever it is possible to do so deterministically.

An implication of the first proposed algorithm is that attacks in the form
of k ≤ 5 general edge modifications (deletions/insertions) can always be
detected in polynomial time (for n > 2), since the replacement of no more
than two edges in a canonical reducible permutation graph yields a graph that
does not belong to the class. A minimum of six edge modifications (three
deletions followed by three insertions) is therefore necessary to change any
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given watermark into a different, valid watermark. Indeed, the sole example
of two canonical reducible permutation graphs which may become isomorphic
to one another when each graph is deprived of only two edges occurs when
n = 2, as illustrated in Figure 6. The instances G1 and G2 correspond to
identifiers ω1 = 2 (binary B = 10) and ω2 = 3 (binary B = 11), respectively.
They become isomorphic to one another when edges (1, 5), (4, 5) are removed
from G1 and edges (1, 4), (4, 6) are removed from G2. An interesting open
problem is to characterize the maximum sets of identifiers Ω(k) such that, for
all ω1, ω2 ∈ Ω(k), the corresponding watermarks cannot become isomorphic
to one another when each one is deprived of k > 2 edges.

Future research focusing on the development of watermarking schemes
resilient to attacks of greater magnitude may consider extending the concept
of canonical reducible permutation graphs by allowing permutations with
h-cycles, with h > 2, as well as multiple fixed elements.
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