Skip to main content

WIGA: Wolbachia Infection Genetic Algorithm for Solving Multi-Objective Optimization Problems

  • Conference paper
Advances in Soft Computing and Its Applications (MICAI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8266))

Included in the following conference series:

  • 2436 Accesses

Abstract

This paper introduces a new evolutionary algorithm for solving multi-objective optimization problems. The proposed algorithm simulates the infection of the endosymbiotic bacteria Wolbachia to improve the evolutionary search. We conducted a series of experiments to compare the results of the proposed algorithm to those obtained by state of the art multi-objective evolutionary algorithms (MOEAs) at solving the ZDT test suite. Our experimental results show that the proposed model outperforms established MOEAs at solving most of the test problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alba, B., Dorronsoro, B.: Cellular Genetic Algorithms. Springer (2010)

    Google Scholar 

  2. Arias-Montano, A., Coello, C.A.C., Mezura-Montes, E.: Multi-objective airfoil shape optimization using a multiple-surrogate approach. In: IEEE Congress on Evolutionary Computation (CEC 2012), pp. 1188–1195. IEEE Press (June 2012)

    Google Scholar 

  3. Coello, C.A.C., Lamont, G.B., van Veldhuizen, V.A.: Evolutionary Algorithms for Solving Multi-Objective Problems. Springer (2007)

    Google Scholar 

  4. Crain, P., Mains, J., Suh, E.: Wolbachia infections that reduce immature insect survival: Predicted impacts on population replacement. BMC Evolutionary Biology 11(290) (2011)

    Google Scholar 

  5. Presgraves, D.C.: A genetic test of the mechanism of wolbachia-induced cytoplasmic incompatibility in drosophila. Genetics (154), 771–776 (2000)

    Google Scholar 

  6. Guevara-Souza, M., Vallejo, E.E.: Computer simulation on disease vector population replacement driven by the maternal effect dominant embryonic arrest(medea). In: Software Tools and Algorithms for Biological Systems, pp. 335–344. Springer (April 2011)

    Google Scholar 

  7. Hoffman, A., Montgomery, B., Popovici, J.: Successful establishment of wolbachia in aedes populations to suppress dengue transmission. Nature (476), 454–459 (2011)

    Google Scholar 

  8. Guevara, M., Vallejo, E.: A computer simulation model of gene replacement in vector populations. In: 8th IEEE International Conference on BioInformatics and BioEngineering Proceedings, pp. 1–6. IEEE (October 2008)

    Google Scholar 

  9. Guevara, M., Vallejo, E.: Computer simulation on the maternal effect dominant embryonic arrest (medea) for disease vector population replacement. In: 11th Annual Conference on Genetic and Evolutionary Computation Proceedings, pp. 1787–1788. ACM (July 2009)

    Google Scholar 

  10. Guevara-Souza, M., Vallejo, E.E.: Wolbachia infection improves genetic algorithms as optimization procedure. In: Dediu, A.-H., Martín-Vide, C., Truthe, B. (eds.) TPNC 2012. LNCS, vol. 7505, pp. 161–173. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Artificial intelligence. Springer (1998)

    Google Scholar 

  12. Dobsonl, S.L., Fox, W., Jiggins, F.: The effect of wolbachia-induced cytoplasmic incompatibility on host population size in natural and manipulated systems. Proc. Biol. Sci. 269(1490), 437–445 (2002)

    Article  Google Scholar 

  13. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation 8(2), 173–195 (2000)

    Article  Google Scholar 

  14. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. Trans. Evol. Comp. 7(2), 117–132 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guevara-Souza, M., Vallejo, E.E. (2013). WIGA: Wolbachia Infection Genetic Algorithm for Solving Multi-Objective Optimization Problems. In: Castro, F., Gelbukh, A., González, M. (eds) Advances in Soft Computing and Its Applications. MICAI 2013. Lecture Notes in Computer Science(), vol 8266. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45111-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45111-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45110-2

  • Online ISBN: 978-3-642-45111-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics