Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8312))

Abstract

Propositional satisfiability (SAT) solvers, which typically operate using conjunctive normal form (CNF), have been successfully applied in many domains. However, in some application areas such as circuit verification, bounded model checking, and logical cryptanalysis, instances can have many parity (xor) constraints which may not be handled efficiently if translated to CNF. Thus, extensions to the CNF-driven search with various parity reasoning engines ranging from equivalence reasoning to incremental Gaussian elimination have been proposed. This paper studies how stronger parity reasoning techniques in the DPLL(XOR) framework can be simulated by simpler systems: resolution, unit propagation, and parity explanations. Such simulations are interesting, for example, for developing the next generation SAT solvers capable of handling parity constraints efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Marques-Silva, J., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers. In: Handbook of Satisfiability. IOS Press (2009)

    Google Scholar 

  2. Tseitin, G.S.: On the complexity of derivations in the propositional calculus. Studies in Mathematics and Mathematical Logic Part II, 115–125 (1968)

    Google Scholar 

  3. Urquhart, A.: Hard examples for resolution. Journal of the ACM 34(1), 209–219 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. Pipatsrisawat, K., Darwiche, A.: On the power of clause-learning SAT solvers as resolution engines. Artificial Intelligence 175(2), 512–525 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Li, C.M.: Integrating equivalency reasoning into Davis-Putnam procedure. In: Proc. AAAI/IAAI 2000, pp. 291–296. AAAI Press (2000)

    Google Scholar 

  6. Li, C.M.: Equivalency reasoning to solve a class of hard SAT problems. Information Processing Letters 76(1-2), 75–81 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Baumgartner, P., Massacci, F.: The taming of the (X)OR. In: Palamidessi, C., et al. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 508–522. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  8. Li, C.M.: Equivalent literal propagation in the DLL procedure. Discrete Applied Mathematics 130(2), 251–276 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Heule, M., van Maaren, H.: Aligning CNF- and equivalence-reasoning. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 145–156. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Heule, M., Dufour, M., van Zwieten, J., van Maaren, H.: March_eq: Implementing additional reasoning into an efficient look-ahead SAT solver. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 345–359. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Chen, J.: Building a hybrid SAT solver via conflict-driven, look-ahead and XOR reasoning techniques. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 298–311. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic problems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–257. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. Laitinen, T., Junttila, T., Niemelä, I.: Extending clause learning DPLL with parity reasoning. In: Proc. ECAI 2010, pp. 21–26. IOS Press (2010)

    Google Scholar 

  14. Soos, M.: Enhanced gaussian elimination in DPLL-based SAT solvers. In: Pragmatics of SAT, Edinburgh, Scotland, GB, p. 1 (July 2010)

    Google Scholar 

  15. Laitinen, T., Junttila, T., Niemelä, I.: Equivalence class based parity reasoning with DPLL(XOR). In: IEEE Proc. ICTAI 2011, pp. 649–658 (2011)

    Google Scholar 

  16. Laitinen, T., Junttila, T., Niemelä, I.: Conflict-driven XOR-clause learning. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 383–396. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  17. Laitinen, T., Junttila, T., Niemelä, I.: Classifying and propagating parity constraints. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 357–372. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  18. Laitinen, T., Junttila, T., Niemelä, I.: Extending clause learning SAT solvers with complete parity reasoning. In: IEEE Proc. ICTAI 2012 (2012)

    Google Scholar 

  19. Weaver, S.A.: Satisfiability advancements enabled by state machines. PhD thesis, Cincinnati, OH, USA, AAI3554401 (2012)

    Google Scholar 

  20. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: From an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). Journal of the ACM 53(6), 937–977 (2006)

    Article  MathSciNet  Google Scholar 

  21. Gwynne, M., Kullmann, O.: On SAT representations of XOR constraints. arXiv document arXiv:1309.3060 (cs.CC) (2013)

    Google Scholar 

  22. Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories. In: Handbook of Satisfiability. IOS Press (2009)

    Google Scholar 

  23. Han, C.-S., Jiang, J.-H.R.: When boolean satisfiability meets gaussian elimination in a simplex way. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 410–426. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  24. Zhang, L., Malik, S.: Validating SAT solvers using an independent resolution-based checker: Practical implementations and other applications. In: IEEE Proc. DATE 2003, pp. 880–885 (2003)

    Google Scholar 

  25. Beame, P., Kautz, H., Sabharwal, A.: Towards understanding and harnessing the potential of clause learning. Journal of Artificial Intelligence Research 22, 319–351 (2004)

    MathSciNet  MATH  Google Scholar 

  26. Eén, N., Sörensson, N.: An extensible SAT solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Laitinen, T., Junttila, T., Niemelä, I. (2013). Simulating Parity Reasoning. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2013. Lecture Notes in Computer Science, vol 8312. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45221-5_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45221-5_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45220-8

  • Online ISBN: 978-3-642-45221-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics