
ar
X

iv
:1

31
0.

23
20

v1
 [

cs
.L

O
]

 9
 O

ct
 2

01
3

An Event Structure Model for Probabilistic

Concurrent Kleene Algebra

Annabelle McIver1, Tahiry Rabehaja1,2 and Georg Struth2

1 Department of Computing⋆

Macquarie University, Sydney, Australia
{annabelle.mciver,tahiry.rabehaja}@mq.edu.au

2 Department of Computer Science
University of Sheffield, United Kingdom

g.struth@dcs.shef.ac.uk

Abstract. We give a new true-concurrent model for probabilistic con-
current Kleene algebra. The model is based on probabilistic event struc-
tures, which combines ideas from Katoen’s work on probabilistic con-
currency and Varacca’s probabilistic prime event structures. The event
structures are compared with a true-concurrent version of Segala’s prob-
abilistic simulation. Finally, the algebraic properties of the model are
summarised to the extent that they can be used to derive techniques
such as probabilistic rely/guarantee inference rules.

1 Introduction

The use of probability in concurrent systems has provided solutions to many
problems where non-probabilistic techniques would fail [1]. However, the combi-
nation of probability and concurrency increases the complexity of any formal tool
powerful enough to ensure the correctness of a system involving both features. It
is then imperative that such a framework should be as simple as possible and the
use of algebras in formal verifications is indeed a step in that direction. In this
paper, we follow an algebraic approach in the style of Hoare et al’s concurrent
Kleene algebra (CKA) that is sound under a true-concurrent interpretation [2].
The algebraic laws model the interactions between probability, nondeterminism,
concurrency and finite iteration operators. The structure produces an algebra
which is an important mathematical tool for carrying out complex verification
tasks and can be used to give robust proofs of concurrent systems, and in par-
ticular for verification techniques such as Jones rely/guarantee rules [2,3].

We have previously developed an interleaving model for probabilistic concur-
rent Kleene algebra (pCKA) that aims to combine probability and concurrency
in a single algebraic setting [4]. Starting from the same set of axioms, we present
a novel true-concurrent model based on bundle event structures (BES) [5,6].
Our motivation is that the concurrency operator of event structures provides a

⋆ This research has been supported by the Australia Research Council Discovery Grant
DP1092464 and the iMQRS Grant from Macquarie University.

http://arxiv.org/abs/1310.2320v1

more faithful interpretation of concurrency found in physical systems. In con-
trast, the parallel composition of automata fails to capture some fundamental
properties such as refinement of actions [7]. Indeed, we show that our seman-
tics distinguishes processes that are equal in the interleaving case. Event struc-
tures were introduced by Winskel [8] and have been studied extensively by oth-
ers [5,6,9,10], refined to bundle event structures by Langerak [6] and extended to
account for probabilistic specifications by Katoen [5]. Katoen concentrated on
event structures for probabilistic process algebras but did not provide the frame-
work needed to compare different event structures. In contrast, Varacca studied
the semantics of probabilistic prime event structures (pPES) using valuations
on the set of configurations [11]. It is well known that prime event structures
are not rich enough to express the right factorisation of sequential composition
through nondeterminism. Our true-concurrent model for pCKA requires a bun-
dle event structure framework extended with probabilistic simulations over the
“configuration-trees”.

Our main contribution is the development of a new model for pCKA endowed
with a true-concurrent version of Segala’s probabilistic simulation [12]. To the
best of our knowledge, this is the first extension of probabilistic simulation to
the true-concurrent setting though non probabilistic versions do exist in the
literature [13,14]. We also define an adequate weakening of Katoen’s techniques
for pBES so that they reduce to Varacca’s definitions for PES.

The paper is organised as follows. In Section 2, we provide the necessary
background for bundle event structures. The algebraic operators are defined in
Section 3 where a particular care is needed for the construction of the binary
Kleene star. Without probability, we argue that bundle event structures endowed
with these operators and quotiented with the pomset language equivalence forms
a concrete model for CKA. In Section 4, we set out the necessary tools for
constructing pBES. In Section 5, we define the notion of probabilistic simulation
on pBES. Section 6 is devoted to showing that the set of pBES endowed with the
defined algebraic operators modulo probabilistic simulation satisfies the axioms
of pCKA. All incomplete proofs are given in full in the appendix.

2 Bundle Event Structures

Event structures provide a truly concurrent denotation for processes where an
event is labelled by an action from a set Σ. An event e may enable another
event f , that is, f cannot happen unless e has already happened. This relation,
denoted by 7→, is useful for sequential dependency. It is also possible that two
events cannot happen simultaneously in a single run which usually occurs when
there is a nondeterministic choice of events. This second relation is denoted by
and is extended to sets of events x, y ⊆ E such that x#y iff for all e ∈ x and
f ∈ y, if e 6= f then e#f . Formally, we have the following definition.

Definition 1 ([6]). A bundle event structure E is a tuple (E,#, 7→, λ, Φ) such
that E is a set of events, # ⊆ E × E is an irreflexive and symmetric binary

relation (the conflict relation), 7→⊆ P(E)× E is called a bundle relation where

∀x ⊆ E ∀e ∈ E : x 7→ e ⇒ x#x,

λ : E → Σ is a labelling (partial) function and Φ ⊆ E is a set of events such
that Φ#Φ. Elements of Φ are called final events and P(E) is the powerset of E.

In the bundle x 7→ e, x is referred to as a bundle set and the event e is pointed
by x. Since x#x holds for every x such that x 7→ e, it follows that exactly one
event in x must enable e and such a unique event is required for each bundle
set pointing to e before it can happen. Given a set of events x ⊆ E, we denote
by cfl(x) = {e ∈ E | ∃e′ ∈ x : e#e′} the set of events that are in conflict with
some event in x. A set x is called conflict free if cfl(x)∩x = ∅. Unlabelled events
happen without any noticeable internal nor external observable outputs. They
are only used as “delimiters”.

A (finite) sequence of events e1e2 · · · en from E is called an event trace if for
every i ≥ 1 and every bundle relation y 7→ ei, there exists j < i such that ej ∈ y
and ei /∈ cfl({e1, . . . , ei−1}) ∪ {e1, . . . , ei−1}.

Definition 2 ([6]). A configuration is a subset x ⊆ E such that x = {e1, . . . , en}
for some event trace e1 · · · en referred to as a linearisation of x. The set of all
configurations (reps. traces) of E is denoted by C(E) (resp. T (E)).

In the sequel we will need to describe the causal dependencies between events
in more detail. To do this we associate a partial order with each configuration.

A labelled partial order (lposet) is a tuple (x,�, λ) where (x,�) is a poset
and λ : x → Σ. Unlabelled events of a lposet u = (x,�, λ) can be removed to
obtain the sub-lposet û = (x̂,�|x̂, λ|x̂) such that x̂ = {e ∈ x | λ(e) is defined}
and where �|x̂ and λ|x̂ are the respective restrictions of � and λ to the set x̂. A
lposet u = (x,�x, λx) implements another lposet v = (y,�y, λy) if there exists
a label-preserving monotonic bijection f : ŷ → x̂ and we write u ⊑s v or simply
x ⊑s y if no confusion arises (s stands for subsumption [15]).

Given an event trace e1 · · · en of a BES E , we denote by �e1···en the reflexive
transitive closure of the order � of events in that sequence i.e. e1 � e2, e2 �
e3, . . . , en−1 � en. The tuple ({e1, . . . , en},�e1···en , λ|{e1,...,en}) is a lposet. Let
x ∈ C(E). We generate a lposet (x,�, λ) where

�=
⋂

x={e1,...,en}∧e1···en∈T (E)

�e1···en

and λ is restricted to x. Intuitively, two events are incomparable iff neither has
to happen before the other.

The set of lposets of E is denoted L(E), that is, L(E) = {(x,�, λ) | x ∈ C(E)}.
Given two bundle event structures E and F , it is well known that C(E) = C(F)
iff T (E) = T (F) iff L(E) = L(F) [5,6]. We say that (x,�x, λx) is a prefix
of (y,�y, λy), written (x,�x, λx) E (y,�y, λy), if x ⊆ y and λy|x = λx and
e �y e′∧e′ ∈ x ⇒ e ∈ x∧e �x e′. The next proposition shows that configurations
inclusion characterises prefixing.

Proposition 1. Let E be a BES. If x, y ∈ C(E) and x ⊆ y then (x,�x, λx) E
(y,�y, λy).

3 Basic Operations on Bundle Event Structures

A concurrent quantale is a particular kind of concurrent Kleene algebra [2]. It
is composed of two quantales that interact via the interchange law (21). In this
section, we show that the set BES of bundle event structures endowed with the
following operators and partial order forms a concurrent quantale. This model
is extended to capture probability in Section 4.

Basic BES: we start by defining the basic BES corresponding to Deadlock,
Skip and one step action.

– Deadlock is denoted by 0 and is associated with the BES (∅, ∅, ∅, ∅, ∅).
– Skip is denoted by 1 and is associated with ({e}, ∅, ∅, ∅, {e}).
– Each a ∈ Σ is associated with ({ea}, ∅, ∅, λ(ea) = a, {ea}), denoted by a.

We fix two BES E = (E,#E , 7→E , λE , ΦE) and F = (F,#F , 7→F , λF , ΦF) such
that E ∩ F = ∅. This ensures that the disjoint union of two labelling functions
is again a function. We define the set in(E) ⊆ E such that e ∈ in(E) iff there is
no x ⊆ E such that x 7→ e. Events in in(E) are called initial events.

Concurrency, sequential composition and nondeterminism [5] are de-
fined in Fig. 1. The concurrent composition E‖F is the disjoint union of E and
F delimited by fresh ineffectual events. Notice there is no synchronisation in ‖,
this is because we are mainly interested in lock-free concurrencies in the style
of [2,3,16,17]. A special event can however be introduced to force synchronisa-
tion [5,7] and most of the algebraic laws remain valid. For the sequential com-
position, new bundles of the form ΦE 7→ e for every e ∈ in(F) are added to
make sure that all events of E precede all events of F . For nondeterminism, the
property in(E)#in(F) is imposed so that the occurrence of any initial event of
E will block every events of F from happening (and symmetrically). The choice
is resolved as soon as one event from E or F happens.

The Kleene star is defined by constructing a complete partial order on the set
of BES. We define the order E E F , which is the sub-BES relation, such that

E ⊆ F

#E = #F ∩ (E × E)

7→E ⊆ 7→F

x 7→F e ∧ e ∈ E ⇒ x ⊆ E ∧ x 7→E e

λE = λF |E

ΦE = ΦF ∩ E

Concurrency E‖F :

– set of events: E ∪ F ∪ {e, f},
– conflicts: #E ∪#F ,
– bundles: 7→E ∪ 7→F ∪{{e} 7→ e′ | e′ ∈

in(E) ∪ in(F)} ∪ {ΦE 7→ f, ΦF 7→ f},
– labelling: λ ∪ λ′,
– final events: ΦE‖F = {f}.

where e, f /∈ E ∪ F .

Sequential composition E · F :

– set of events: E ∪ F ,
– conflicts: #E ∪#F ,
– bundles: 7→E ∪ 7→F ∪{ΦE 7→ e | e ∈

in(F)},
– labelling : λ ∪ λ′,
– final events: ΦE·F = ΦF .

Nondeterminism E + F :

– set of events: E ∪ F ,
– conflicts: #E ∪#F ∪ sym(in(E)× in(F)) ∪ sym(ΦE × ΦF),
– bundles: 7→E ∪ 7→F ,
– labelling: λ ∪ λ′,
– final events: ΦE+F = ΦE ∪ ΦF .

where sym(x× y) = (x× y) ∪ (y × x) is the symmetric closure.

Fig. 1. Definitions of E‖F , E · F and E + F .

We use the following binding precedence: ∗, ·, ‖,+. The probabilistic choice
⊕α (defined later) and + are unordered and are parsed using brackets.

Proposition 2. (BES,E) is an ω-complete partially ordered set, that is, any
countable ascending chain has a least upper bound in BES.

Proof (Sketch). The proof that E is a partial order amounts to checking reflex-
ivity, antisymmetry and transitivity which is clear. As for ω-completeness, given
a countable increasing sequence of BES E0 E E1 E E2 E · · · , we construct a
BES E = (∪iEi,∪i#i,∪i 7→i,∪iλi,∪Φi). We can show that E is indeed the least
upper bound w.r.t E of the countable sequence (Ei)i. ⊓⊔

Let E ,F be two BES. The Kleene product of E by F , denoted by E ∗ F , is
the limit of the E-increasing sequence of BES

F E F + E · F E F + E · (F + E · F) E · · ·

where adequate events renaming are needed to ensure that the sequence of BES
are syntactically similar (see Fig. 2 for a concrete example). Equivalently, E ∗ F
is the least fixed point of λX.F + E · X in (BES,E). The unary Kleene star
is obtained as usual by E∗ = E ∗ 1. The main reason behind the use of the
binary Kleene star [18] is that the unary version introduces unwanted sequential
compositions. For instance, in normal Kleene algebras, a while loop with body
E is encoded as (eg · E)∗ · e¬g where eg (resp. e¬g) is the event associated with
the guard. Hence by the interchange law (21), ((eg · E)∗ · e¬g)‖a can behave as

f0 E f0 # e0❴

��
f1

E f0 # e0❴

��

✁

❆❆

❆❆
❆❆

❆❆

f1 # e1

��
f2

An arrow 7→ denotes a bundle relation and # is the conflict relation. The events fi
are labelled by b while the eis are labelled by a.

Fig. 2. The first three terms in the construction of a ∗ b.

(eg · E)∗ · a · e¬g but we would assume that each eg and the corresponding e¬g

are checked simultaneously. Hence, we interpret a while loop as (eg · E) ∗ e¬g.
For convenience, we denote each component of the above sequence by E ∗≤0

F = F , E ∗≤1 F = F + E · F , E ∗≤2 F = F + E · (F + E · F),. . . . The following
proposition ensures that these operators are well defined.

Proposition 3. Let E ,F be BES. Then for every • ∈ {+, ·, ‖, ∗} ΦE•F#ΦE•F .

Proof. We have ΦE+F = ΦE ∪ ΦF and since ΦE × ΦF ⊆ #E+F , it follows that
ΦE+F#E+FΦE+F . The result is clear for the case of E · F and E‖F because
ΦE·F = ΦF and ΦE‖F = {f} where f is the fresh final event in the construction
of E‖F . For the Kleene star, we have ΦE∗F = ∪iΦE∗≤iF (increasing union).
Therefore, any pair of events (e, e′) ∈ ΦE∗≤iF ×ΦE∗≤jF are mutually conflicting
with respect to the conflict relation of E ∗≤max(i,j) F . ⊓⊔

We end this section by observing that (BES,+, ·, ‖, 0, 1) is a concurrent quan-
tale where the operator • ∈ {·, ‖} is redefined so that E •0 = 0•E = 0. Following
Gischer [15], we define an order relation based on pomset language subsump-
tion. Recall that a pomset is an equivalence class of lposets w.r.t the equivalence
relation generated by ⊑s. For finite lposets u and v, we have u ⊑s v and v ⊑s u
iff û is isomorphic to v̂; hence our definition coincides with Gischer’s. The equiv-
alence class of a lposet u is denoted by the totally labelled lposet û. The pomset
language of a BES E is defined by

{v̂ | ∃u ∈ L(E) : v ⊑s u ∧ v is a lposet}.

When a BES is considered modulo pomset language equivalence, we show that
(BES,+, ·, 0, 1) and (BES,+, ‖, 0, 1) are quantales, i.e., each structure is an
idempotent semiring, a complete lattice under the natural order E ≤ E iff E+F =
F and the operator • ∈ {·, ‖} distributes over arbitrary suprema and infinima.
The interchange law (21) is ensured by the subsumption property. The following
proposition essentially follows from Gischer’s results [15]. In fact, Gischer proves
that the axioms of CKA without the Kleene star completely axiomatise the
pomset language equivalence.

Proposition 4. For each • ∈ {·, ‖}, the structure (BES,+, •, 0, 1) is a quantale
under the pomset language equivalence.

4 Probabilistic Bundle Event Structures

In this section, we adapt Katoen’s and Varacca’s works on probabilistic event
structures [5,11]. In particular, we refine the notions of cluster and confusion
freeness which are necessary for the definition of probabilistic bundle event struc-
tures (pBES). We use the standard transformation of prime event structures into
BES to ensure that our definitions properly generalise Varacca’s.

4.1 Immediate Conflict, Clusters and Confusion Free BES

The key idea of probabilistic event structures is to use probability as a mechanism
to resolve conflicts. However, not all conflicts can be resolved probabilistically [5].
The cases where this occurs are referred to as confusions. A typical example of
confusion is depicted by the first three events e1, e2 and e3 of Fig 3 where e1#e2,
e2#e3 and ¬e1#e3 hold allowing e1 and e3 to occur simultaneously in a single
configuration. However, if the conflict e1#e2 is resolved with a coin flip and if
the result is e2, then e2#e3 cannot be resolved probabilistically because it may
produce e3. Following Varacca [11], we start by characterising conflicts that may
be resolved probabilistically.

Definition 3. Given a BES E, two events e, e′ ∈ E are in immediate conflict if
e#e′ and there exists a configuration x such that x ∪ {e} and x∪ {e′} are again
configurations. We write e#µe

′ when e and e′ are in immediate conflict.

Example 1. In the BES of Fig. 3, e4 and e5 are in immediate conflict because
{e1, e3, e4} and {e1, e3, e5} are configurations. In fact, every conflicts in that BES
are immediate. Notice that the conflict e4#e5 is resolved when e2 occurs.

e1

!!
❇❇

❇❇
❇❇

❇❇
#µ e2

��

#µ e3❴

��
e4 #µ e5

In this BES, the bundles are {e1, e2} 7→ e4 and {e3} 7→ e5. The conflict relation is
e1#e2 and e2#e3. Therefore, e1 and e3 are concurrent. An arrow → represents some
part of a bundle (i.e. {e1, e2} 7→ e4 is the completed bundle) and 7→ represents a bundle.

Fig. 3. Immediate conflict in a BES.

Events can be grouped into clusters of events that are pairwise in immediate
conflict. More precisely, we define a cluster as follow.

Definition 4. A partial cluster is a set of events K ⊆ E satisfying

∀e, e′ ∈ K : e 6= e′ ⇒ e#µe
′ and

∀e, e′ ∈ K,x ⊆ E : x 7→ e ⇒ x 7→ e′

A cluster is a maximal partial cluster (w.r.t inclusion).

Given an event e ∈ E, the singleton {e} is a partial cluster. Therefore, there
is always at least one cluster (i.e. maximal) containing e and we write 〈e〉 the
intersection of all clusters containing e.

Example 2. In Fig. 3, {e1, e2} and {e2, e3} are clusters and 〈e2〉 = {e2}.

Proposition 5. A partial cluster K is maximal (i.e. a cluster) iff

∀e ∈ E : (∀e′ ∈ K : e#µe
′ ∧ ∀x ⊆ E : x 7→ e ⇔ x 7→ e′) ⇒ e ∈ K

Proof. The forward implication follows from Definition 4 and maximality of K.
Conversely, assume that K is a partial cluster satisfying the above property. Let
H be a partial cluster such that K ⊆ H and e ∈ H . Then, for all e′ ∈ K, e#µe

′

and
∀z ⊆ E : x 7→ e ⇔ x 7→ e′

because H is a partial cluster. By the hypothesis, e ∈ K and hence H = K. ⊓⊔

As in Katoen’s and Varacca’s works, clusters are used to carry probability
and they can be intuitively seen as providing a choice between events where the
chosen event happens instantaneously. Notice that our notion of cluster is weaker
than Katoen’s original definition [5]: the BES in Fig. 4 contains three clusters
{e1, e2}, {e3} and {e4, e5} and only {e1, e2} satisfies Katoen’s definition.

e1❴

��

#µ e2❁

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤

❴

��

e4

#µ

e3 # e5

Fig. 4. A BES where {e1, e2}, {e3} and {e4, e5} are clusters.

Definition 5. A BES E is confusion free if for all events e, e′ ∈ E,

– if e#µe
′ then e ∈ 〈e′〉, and

– if 〈e〉 ∩ x = ∅ and x ∪ {e} ∈ C(E) for some configuration x ∈ C(E), then
x ∪ {e′′} ∈ C(E) for all events e′′ ∈ 〈e〉.

The first property implies that 〈e〉 contains all events in immediate conflict with
e and hence the confusion introduced by e1, e2 and e3 in Fig. 3 is avoided. The
second property says that once one event in 〈e〉 is enabled then all events in 〈e〉
are also enabled. Hence, confusion freeness ensures that all conflicts in 〈e〉 can
be resolved probabilistically regardless of the history. The proof of the following
proposition is the same as for prime event structures [11].

Proposition 6. For a confusion free BES E, the set {〈e〉 | e ∈ E} defines a
partition of E. That is, the reflexive closure of #µ is an equivalence relation and
the equivalence classes are of the form 〈e〉.

The second property of Definition 5 is usually hard to check. We give a static
and simpler sufficient condition for confusion freeness.

Proposition 7. If a BES E satisfies

∀e, e′ ∈ E : (e#µe
′ ⇒ e ∈ 〈e′〉) ∧ (〈e〉 ∩ cfl(e′) 6= ∅ ⇒ 〈e〉 ⊆ cfl(e′))

then it is confusion free.

The second argument of the conjunction says that if some event in 〈e〉 is in
conflict with an event e′ then all events in 〈e〉 are in conflict with e′.

Proof. Let e ∈ E and x ∈ C(E) such that 〈e〉 ∩ x = ∅ and x ∪ {e} ∈ C(E). Let
e′ ∈ 〈e〉 and z 7→ e′ be a bundle of E . We need to show that x ∪ {e′} ∈ C(E). By
Definition 4, z 7→ e is also a bundle and since x and x ∪ {e} are configurations,
e1 · · · ene is again a linearisation of x ∪ {e} for every linearisation e1 · · · en of x.
Therefore, z ∩ {e1, . . . , en} 6= ∅. If e′ ∈ cfl(ei) for some i, then 〈e〉 ⊆ cfl(ei) by
the hypothesis and hence e ∈ cfl(ei), which is impossible because x ∪ {e} is a
configuration. Hence e1 · · · ene′ is an event trace, that is, x ∪ {e′} ∈ C(E). ⊓⊔

Example 3. Fig. 4 depicts a confusion free BES that satisfies Proposition 7.

With confusion freeness, we are now able to define probability distributions
supported by clusters. Recall that a probability distribution on the set E is a
function p : E → [0, 1] such that

∑
e∈E p.e = 1. We say that p is a probability

distribution on E if supp(p) ⊆ 〈e〉 for some event e.

Definition 6. A probabilistic BES is a tuple (E , π) where E is a confusion free
BES and π is a set of probability distribution on E such that for every e ∈ E,
there exists p ∈ π such that e ∈ supp(p).

The intuition behind this definition is simple: if there is no p ∈ π such that
e ∈ supp(p) then e is an impossible event and it can be removed (this may affect
any event e′ such that e �x e′ for some x ∈ C(E)). Our approach differs from both
Varacca’s [11] and Katoen’s [5] in that nondeterminism is modelled concretely
as a set of probabilistic choices. This approach will mainly contribute to the
definition of the probabilistic choice operator ⊕α of Section 6. For instance, the
expression a+ (b ⊕α c) does not have any meaning in Katoen’s pBES, however,
it will have a precise semantics in our case.

5 Probabilistic Simulation on pBES

The weakest interpretation of ⊑ on pBES is the configuration distribution equiv-
alence [11]. However, as in the interleaving case, that is not a congruence [12]. We

use probabilistic simulations which are based on the notion of lifting from [19].
We denote by D(X) the set of (discrete) probability distributions over the set
X . Given x ∈ X , we denote by δx the point distribution concentrated at x.

Let S ⊆ X×D(Y) be a relation. The lifting of S is a relation S ⊆ D(X)×D(Y)
such that (∆,Θ) ∈ S iff

– ∆ =
∑

i αiδxi
where

∑
i αi = 1,

– for every xi, there exists Θi ∈ D(Y) such that (xi, Θi) ∈ S,

– Θ =
∑

i αiΘi.

Notice that the decomposition of ∆ may not be unique. The main properties
of lifting are summarised in the following proposition.

Proposition 8 ([19]). Let S ⊆ X × D(Y) be a relation and
∑

i αi = 1. We
have

– if (∆i, Θi) ∈ S then (
∑

i αi∆i,
∑

i αiΘi) ∈ S,

– if (
∑

i αi∆i, Θ) ∈ S then there exists a collection of distributions Θi such
that (∆i, Θi) ∈ S and Θ =

∑
i αiΘi.

Since the notion of configuration for a pBES (E , π) is independent of π, we
keep the notation C(E) for the set of all finite configurations. An example of
relation on C(E) × D(C(E)) is given by the probabilistic prefixing. We say that
x ∈ C(E) is a prefix of ∆ ∈ D(C(E)), denoted (again) by x E ∆, if there exists
p ∈ π such that supp(p) ∩ x = ∅ and ∆ =

∑
e∈supp(p)(p.e)δx∪{e}. In particular,

if 〈e〉 = {e}, e /∈ x and x ∪ {e} ∈ C(E) then x E δx∪{e}.

The relation E is lifted to E ⊆ D(C(E))×D(C(E)) and the reflexive transitive
closure of the lifted relation is denoted by E

∗
. Probabilistic prefixing allows us to

construct a configuration-tree for every pBES. An example is depicted in Fig. 5.

To simplify the presentation, we restrict ourselves to BES satisfying Φ∩x = ∅
for every bundle x 7→ e, that is, no event is enabled by a final event. This allows
a simpler presentation of the preservation of final events by a simulation. Notice
that all BES constructed from the operators defined in this paper satisfy that
property (details can be found in the appendix).

Definition 7. A (probabilistic) simulation from (E , π) to (F , ρ) is a relation
S ⊆ C(E)× D(C(F)) such that

– (∅, δ∅) ∈ S,

– if (x,Θ) ∈ S then for every y ∈ supp(Θ), x ⊑s y,

– if (x,Θ) ∈ S and x E ∆′ then there exists Θ′ ∈ D(C(F)) such that ΘE
∗
Θ′

and (∆′, Θ′) ∈ S.

– if (x,Θ) ∈ S and x∩ΦE 6= ∅ then for every y ∈ supp(Θ) we have y∩ΦF 6= ∅.

We write (E , π) ⊑ (F , ρ) if there is a simulation from (E , π) to (F , ρ).

∅

��
{e}

��

0.2

&&

0.8

xx
{e, e2}

��

{e, e1}

0.8

xx

0.2

&&

{e, e3}

��
{e, e1, e2}

��

{e, e1, e3}

��
{e, e1, e2, f} {e, e1, e3, f}

The dotted arrows with common source are parts of a probabilistic prefix relation (e.g.
{e} E 0.8δ{e,e2} + 0.2δ{e,e3}). The events e, f are the delimiters introduced by ‖.

Fig. 5. The configurations-tree of the pBES e1‖(e2 ⊕0.2 e3) (⊕0.2 is defined later).

Indeed, Definition 7 is akin to probabilistic forward simulation on automata. The
main difference is the use of the implementation relation x ⊑s y which holds iff
there exists a label preserving monotonic bijection from (ŷ,�y, λy) to (x̂,�x

, λx). The implementation relation compares partially ordered configurations
rather than totally ordered traces, hence, interferences between incomparable
or concurrent events are allowed. Another consequence of this definition is that
concurrent events can be linearised while preserving simulation.

Proposition 9. ⊑ is a preorder.

The proof is the same as in [19], hence, we provide only a sketch.

Proof (Sketch). Reflexivity is clear by considering the relation {(x, δx) | x ∈
C(E)} which is indeed a simulation. If R,S are probabilistic simulations from
(E , π) to (F , ρ) and (F , ρ) to (G, r) respectively then we can show, using Propo-
sition 8 and a similar proof as in the interleaving case, that R◦S is a probabilistic
simulation from (E , π) to (G, r). ⊓⊔

A major difference from our previous work [4] is that the event structure
approach provides a truly concurrent interpretation of pCKA. The most notable
benefit of using a true-concurrent model is substitution [7,15] where a single step
event can be refined with another event structure after a concurrency operator
has been applied. In the automata model, such a substitution must occur before
the application of the concurrency operator to obtain the correct behaviour.
Moreover, in interleaving, concurrency is related to the nondeterministic choice
whereas here the two operators are orthogonal.

Example 4. In Fig. 6, it is shown that a · b + b · a ⊑ a‖b but the converse does
not hold.

∅

{{✇✇
✇✇
✇✇
✇✇
✇

##●
●●

●●
●●

●●
-- ∅

��
{ea}

�� ,,❳❳❳
❳❳❳❳

❳❳❳❳
❳❳❳❳

❳❳❳❳
❳❳❳❳

❳❳❳❳
❳❳❳❳

❳❳ {e′
b
}

�� **

{e}

yyss
ss
ss
ss
ss
s

%%❑
❑❑

❑❑
❑❑

❑❑
❑❑

{ea � eb}

,,

{e′
b

� e′a}

$$

{e, fa}

%%▲
▲▲

▲▲
▲▲

▲▲
▲

{e, fb}

yyrr
rr
rr
rr
rr

{e, fa, fb}

��
{e, fa, fb, f}

Since {e, fa, fb, f} 6⊑s {ea � eb} nor {e, fa, fb, f} 6⊑s {e′b � e′a}, it is impossible to find
a simulation from a‖b to a · b+ b · a. In the configuration tree on the left, the order �
is made explicit and primes are introduced for disjointness.

Fig. 6. A simulation from a · b+ b · a to a‖b.

6 Probabilistic Concurrent Kleene Algebra

In this section, we show that the set pBES endowed with a nondeterministic
choice (+), a probabilistic choice (⊕α), a sequential composition (·), a concurrent
composition (‖) and the binary Kleene star (∗) satisfy the axioms of Fig. 7. These
axioms are a combination of the basic algebraic laws of CKA [2] and pKA [20].

We generate the pBES (0, ∅), (1, {δe}) and (a, {δea}) from the basic BES. To
simplify the notations, these basic pBES are again denoted by 0, 1 and a. The
other operators are defined as follows:

(E , π) + (F , ρ) = (E + F , π ∪ ρ)

(E , π) · (F , ρ) = (E · F , π ∪ ρ)

(E , π)‖(F , ρ) = (E‖F , π ∪ ρ ∪ {δe, δf})

where e and f are the fresh events delimiting E‖F . Recall that E and F are
assumed to be disjoint in these definitions. The probabilistic choice that chooses
E with probability 1− α and F with probability α is

(E , π) ⊕α (F , ρ) = (E + F , π ⊕α ρ)

where r ∈ π ⊕α ρ iff:

– if supp(r) ⊆ in(E)∪ in(F) then r = (1−α)p+αq for some p ∈ π and q ∈ ρ,
– else r ∈ π ∪ ρ.

Intuitively, nondeterminism is resolved first by choosing a probability distri-
bution, then a probabilistic choice is resolved based on that distribution. Indeed,
the nondeterministic and probabilisic choices introduce clusters.

E + E ≡ E (1)

E + F ≡ F + E (2)

E + (F + G) ≡ (E + F) + G (3)

E + 0 ≡ E (4)

E ≡ E ⊕α E (5)

E ⊕α F ≡ F ⊕1−α E (6)

E ⊕α (F ⊕β G) ≡ (E ⊕α(1−β)
1−αβ

F) ⊕αβ G (7)

(E ⊕α F) · G ≡ E · G ⊕α F · G (8)

E · (F · G) ≡ (E · F) · G (9)

E · 1 ≡ E (10)

1 · E ≡ E (11)

0 · E ≡ 0 (12)

1‖E ≡ E (13)

E‖F ≡ F‖E (14)

E‖(F‖G) ≡ (E‖F)‖G (15)

(E + F) · G ≡ E · G +F · G (16)

E · F + E · G ⊑ E · (F + G) (17)

E · (F ⊕α G) ⊑ E · F ⊕α E · G (18)

E‖F + E‖G ⊑ E‖(F + G) (19)

E‖(F ⊕α G) ⊑ E‖F ⊕α E‖G (20)

(E‖F) · (E ′‖F ′) ⊑ (E · E ′)‖(F · F ′) (21)

F + E · (E ∗ F) ≡ (E ∗ F) (22)

G + E · F ⊑ F ⇒ E ∗ G ⊑ F (23)

Fig. 7. Axioms of pCKA satisfied by pBES modulo probabilistic simulation. Here, we
write a pBES simply with E instead of the tuple (E , π) and αβ < 1 in Equation (7)
(the case αβ = 1 being a simplification of the left hand side).

Example 5. The BES a‖(b ⊕0.2 c) contains four clusters 〈e〉, 〈eb, ec〉, 〈ea〉 and 〈f〉
where e, f are the delimiter events. It has a set of probability distributions
{0.8δeb + 0.2δec , δea , δe, δf}. In contrast, the event structure a+ (b ⊕0.2 c) has a
single cluster 〈ea, eb, ec〉 with set of probability distributions {0.8δeb+0.2δec , δea}.

To construct the binary Kleene star, we need the following partial order

(E , π) E (F , ρ) iff E E F ∧ π = {p ∈ ρ | supp(p) ⊆ E}.

The proof that E is indeed ω-complete is essentially the same as in the standard
case (Section 3). Hence the Kleene product (E , π) ∗ (F , ρ) is again the limit of
the increasing sequence of pBES:

(F , ρ) E (F , ρ) + (E , π) · (F , ρ) E (F , ρ) + (E , π) · ((F , ρ) + (E , π)) E · · · .

More precisely, (E , π) ∗ (F , ρ) = (E ∗ F , π ∗ ρ) where π ∗ ρ = ∪iπ ∗≤i ρ and each
set π ∗≤i ρ is obtained from the construction of E ∗≤i F .

A BES is regular if it is inductively defined with the operators of Section 3.

Proposition 10. A Regular BES is confusion free.

Proof (Sketch). By induction on the structure of the BES.

Proposition 11. The order ⊑ is a precongruence i.e. for every pBES (E , π), (F , ρ)
and (G, η), if (E , π) ⊑ (F , ρ) then (E , π) • (G, η) ⊑ (F , ρ) • (G, η) (and symmet-
rically) for every • ∈ {+, ·, ‖, ∗}.

Proof (Sketch). Let (E , π) ⊑ (F , ρ) be witnessed by a simulation S ⊆ C(E) ×
D(C(F)) and (G, η) be any pBES. The congruence properties are proven by
extending the simulation S to the events of G. For instance, That (E , π)+(G, η) ⊑
(F , ρ) + (G, η) is deduced by showing that S ∪ {(x, δx) | x ∈ C(G)} is indeed a
simulation.

⊓⊔

The axioms (1-12) and (14-16) are proven using simulations akin to the in-
terleaving case [4,19]. The existence of simulations that establishes axiom (13)
is clear from the definition of ‖ and 1. It follows from the axioms of + and
Proposition 11 that (E , π) ⊑ (F , ρ) if and only if (E , π) + (F , ρ) ≡ (F , ρ).

Proposition 12. The axioms (17,18) and (19,20) and the interchange law (21)
hold on pBES modulo probabilistic simulation.

Proof (Sketch). These equations are proven by the usual simulation construc-
tions. ⊓⊔

Proposition 13. The binary Kleene star satisfies the axioms (22) and (23).

Proof (Sketch). The first equation is proven using the standard simulation con-
struction. For the second one, let S ⊆ C(E · F) × D(C(F)) be a probabilistic
simulation from (E , π) · (F , ρ) to (F , π). By monotonicity of · and +, there exists
a simulation S(i) ⊆ C(E ∗≤i F) × D(C(F)) from (E , π) ∗≤i (F , ρ) to (F , ρ), for
every i ∈ N. Moreover, we can find a family of simulations such that S(i−1) is
the restriction of S(i) to (E , π) ∗≤i−1 (F , ρ). Thus, we can consider the reunion
S = ∪iS

(i) and show that it is indeed a simulation from (E , π) ∗ (F , ρ) to (F , ρ).
Hence, Equation (23) holds. ⊓⊔

Theorem 1. The set pBES modulo probabilistic simulation forms a probabilis-
tic concurrent Kleene algebra with a binary Kleene star.

7 Conclusion

We have constructed a truly concurrent model for probabilistic concurrent Kleene
algebra using pBES. In the process, we also set out a notion of probabilistic sim-
ulation for these event structures. The semantics of pBES was defined by con-
structing the configuration-trees using prefixing and probabilistic simulations
are exhibited when possible. Since the simulation distinguishes between concur-
rency and interleaving, we believe that it provides a suitable combination of
nondeterminism, probability and true-concurrency.

Our main result is the soundness of pCKA axioms. The completeness of such
an axiom system is still open. We believe that other axioms such as guarded tail
recursion are needed to achieve a complete characterisation as in [21]. Another
interesting specialisation of this work is the labelling of events with one-step
probabilistic programs. These however require further studies.

References

1. Rabin, M.O.: Probabilistic Algorithms. Technical Report RC 6164 (#26545), IBM
Research Division, San Jose, Yorktown, Zurich (August 1976)

2. Hoare, T., Möller, B., Struth, G., Wehrman, I.: Concurrent kleene algebra and its
foundations. J. Log. Algebr. Program. 80(6) (2011) 266–296

3. Hayes, I.J., Jones, C.B., J., C.R.: Refining rely-guarantee thinking. Technical
report, Newcastle University, United Kingdom (2012)

4. McIver, A.K., Rabehaja, T.M., Struth, G.: Probabilistic concurrent Kleene algebra.
In Bortolussi, L., Wiklicky, H., eds.: QAPL. Volume 117 of EPTCS. (2013) 97–115

5. Katoen, J.P.: Quantitative and qualitative extensions of event structures. PhD
thesis, University of Twente (1996)

6. Langerak, R.: Bundle event structures: a non-interleaving semantics for LOTOS.
Memoranda informatica. University of Twente (1992)

7. Rensink, A., Gorrieri, R.: Action refinement for vertical implementation. In Wolisz,
A., Schieferdecker, I., Rennoch, A., eds.: FBT. Volume 315 of GMD-Studien.,
GMD-Forschungszentrum Informationstechnik GmbH (1997) 69–78

8. Winskel, G.: Event structures. In Brauer, W., Reisig, W., Rozenberg, G., eds.:
Advances in Petri Nets. (1986) 325–392

9. van Glabbeek, R.J., Vaandrager, F.W.: Bundle event structures and ccsp. In
Amadio, R.M., Lugiez, D., eds.: CONCUR. Volume 2761 of LNCS., Springer (2003)
57–71

10. van Glabbeek, R.J., Plotkin, G.D.: Configuration structures, event structures and
petri nets. Theor. Comput. Sci. 410(41) (2009) 4111–4159

11. Varacca, D.: Probability, nondeterminism and concurrency: two denotational mod-
els for probabilistic computation. PhD thesis, University of Aarhus (2003)

12. Segala, R.: A compositional trace-based semantics for probabilistic automata. In
Lee, I., Smolka, S.A., eds.: CONCUR. Volume 962 of LNCS., Springer (1995) 234–
248

13. Cherief, F.: Back and forth bisimulations on prime event structures. In Etiemble,
D., Syre, J.C., eds.: PARLE. Volume 605 of LNCS., Springer (1992) 843–858

14. Majster-Cederbaum, M., Roggenbach, M.: Transition systems from event struc-
tures revisited. Info. Proc. Letters 67(3) (1998) 119 – 124

15. Gischer, J.L.: The equational theory of pomsets. Theor. Comput. Sci. 61(23)
(1988) 199 – 224

16. Jones, C.B.: Development Methods for Computer Programs including a Notion of
Interference. PhD thesis, Oxford University (June 1981)

17. Dingel, J.: A refinement calculus for shared-variable parallel and distributed pro-
gramming. Formal Asp. Comput. 14(2) (2002) 123–197

18. Fokkink, W., Zantema, H.: Basic process algebra with iteration: Completeness of
its equational axioms. Comput. J. 37(4) (1994) 259–268

19. Deng, Y., van Glabbeek, R.J., Hennessy, M., Morgan, C., Zhang, C.: Remarks on
testing probabilistic processes. Electron. Notes Theor. Comput. Sci. 172 (2007)
359–397

20. McIver, A.K., Weber, T.: Towards automated proof support for probabilistic dis-
tributed systems. In Sutcliffe, G., Voronkov, A., eds.: LPAR. Volume 3835 of LNAI,
Springer (2005) 534–548

21. Parma, A., Segala, R.: Axiomatization of trace semantics for stochastic nondeter-
ministic processes. In Franceschinis, G., Haverkort, B.R., Katoen, J.P., Woodside,
M., eds.: QEST, IEEE Computer Society (2004) 294–303

Appendix

In this appendix, we denote event traces simply by the Greek letters α, β, . . .
and α is the set of events occurring in the event trace α.

7.1 Proof Complement for Proposition 1

Lemma 1. Let α ∈ T (E) and x ∈ C(E) such that x ⊆ ᾱ, then the restriction
α|x of α to events in x is an event trace.

Proof. Let α = e1e2 · · · en, x ∈ C(E) and α|x = ei1ei2 · · · eim . Let eik ∈ x and
z 7→ eik be a bundle of E . Since α is an event trace, there exists a even ej such
that ej ∈ z and j < ik. Since x is a configuration and eik ∈ x, there exists eil ∈ z
and l < k. By definition, the bundle set z contains mutually conflicting events
only and since y is conflict free, eil = ej . Hence, α|x is an event trace. ⊓⊔

Lemma 2. Let x ∈ C(E) and y ∈ C(E) such that x ⊆ y, for every trace event α
such that α = x there exists a trace event α′ such that α′ = y and α′|x = α.

Proof. Let α, β be any event traces such that α = x, β = y and x ⊆ y. Let β′ bet
the concatenation of two sequences β1β2 where events in β1 are exactly those of
x ordered with �β and β2 is composed of events from y \ x ordered again with
�β. We now show that β′ is an event trace. That β′ is conflict free comes from
the configuration y. Let z 7→ e1 be a bundle of E such that e1 ∈ β1. Since β1 = x
is a configuration, z ∩ β1 6= ∅ and that element has to be ordered before e1 with
respect to �β because z contains mutually conflicting events so z ∩ β1 = z ∩ β
contains exactly one event. That is, β1 is an event trace. As for β2, let z 7→ e2 be
a bundle and e2 ∈ β2. Since y is a configuration, we have z ∩ β 6= ∅ and the sole
event in that intersection is ordered before e2 in the event trace β1β2 because
�β2⊆�β. Hence β′ is an event trace.

Finally, let β′′ = αβ2. With the same argument as before, we can show that
β′′ is an event trace and hence β′′|x = α. ⊓⊔

Proposition 1. Let E be a BES, if x ∈ C(E), y ∈ C(E) and x ⊆ y then (x,�x

, λx) E (y,�y, λy).

Proof. Let x ⊆ y. Let us first show that �x=�y ∩(x×x). Let e, e′ ∈ x such that
e �x e′. Lemma 1 implies that e �y e′ because every event trace for y restricts
to an event trace for x. For the converse inclusion, let e, e′ ∈ x such that e �y e′.
Lemma 2 implies that every event trace for x can be obtained as a restriction of
some event trace for y. Hence, e �x e′. Therefore �x=�y ∩(x× x).

Let e, e′ ∈ y, e �y e′ and e′ ∈ x. It now suffices to show that e ∈ x. In fact,
if e /∈ x, then there exists an event trace β′ = β1β2 as specified in the proof
of Lemma 2, that is, β′ = y, β1 = x and e ∈ β2. Therefore, e �β′ e′ which
contradict the fact that e �y e′. ⊓⊔

7.2 Proof Complement for Proposition 2 and Properties of E

Proposition 2 (BES,E) is an ω-complete partially ordered set.

Proof. Firstly, we prove that E is a partial order. It is clear that E is reflexive.
To prove antisymmetry, Let E E E ′ and E ′ E E , then E = E′. Let z 7→ e is a
bundle of E . Since E = E′, we have e ∈ E′ and hence z ⊆ E′ and z 7→′ e i.e. it
is also a bundle of E ′. The fact that # and #′ (resp. λ and λ′) coincide follows
directly from the definition. To prove transitivity, let E E E ′ and E ′ E E ′′. We
need to prove that E E E ′′. It is clear that E ⊆ E′′. Let z 7→′′ e be a bundle
of E ′′ and e ∈ E. Since E ⊆ E′, we have e ∈ E′ and since E ′ E E ′′, we obtain
z ⊆ E′ and z 7→′ e is a bundle of E ′. Since e ∈ E and E E E ′, we have z ⊆ E and
z 7→ e is a bundle of E . The properties # = #′′ ∩ E × E and λ = λ′′ ∩ E × Σ
and Φ = Φ′′ ∩ E follows from similar argument. Hence E E E ′′.

Secondly, let E0 E E1 E E2 E · · · be a countable increasing chain of BES and
let E = ∪iEi endowed with the following components:

– set of events: E = ∪iEi,
– conflict relation: # = ∪i#i,
– bundle relation: 7→= ∪i 7→i,
– labelling function: λ = ∪iλi,
– final events: Φ = ∪iΦi.

We show that Ei E E for all i and if Ei E F for all i then E E F .
Let i ∈ N, we have Ei ⊆ E by construction. Let (e, e′) ∈ #∩ (Ei ×Ei). Since

= ∪i#i, there exists j ∈ N such that e#je
′. There are two cases:

– if j ≤ i, then #j ⊆ #i and e#ie
′,

– if i < j, then Ei E Ej and hence #j ∩ (Ei × Ei) = #i i.e. e#ie
′.

A similar argument can be used to prove λi = λ ∩ (Ei × Σ), Φi = Φ ∩ Ei and
the relationship between bundles of E and Ei.

Finally, let Ei E F for all i. We need to show that E E F . It is clear that
E ⊆ F where F is the set of events of F .

– Let (e, e′) ∈ #F ∩ (E×E). By definition of E, there exists i, j ∈ N such that
e ∈ Ei and e′ ∈ Ej . Assume that i ≤ j, then e, e′ ∈ Ej . Since Ej E F , we
have e#je

′ and hence e#e′.
– A similar argument can be used to prove λ = λF ∩ (E ×Σ) and Φ = ΦF ∩E.
– It is clear that 7→⊆7→F . Let z 7→F e be a bundle of F and e ∈ E. There

exists i ∈ N such that e ∈ Ei and since Ei E F , we deduce that z ⊆ Ei and
z 7→i e is a bundle of Ei. Hence, z 7→ e is a bundle of E . ⊓⊔

Proposition 14. Let E , E ′ be two BES such that E E E ′, then T (E) = {α | α ∈
T (E ′) ∧ α ⊆ E}.

Proof. Let α ∈ T (E ′) such that α ⊆ E and let us show that α ∈ T (E). Let us
write α = e1e2 · · · en. By definition of an event trace, we have z∩{e1, . . . , ei−1} 6=
∅ for every bundle z 7→′ ei in E ′ and since 7→⊆7→′ we also have y∩{e1, . . . , ei−1} 6=

∅ for every bundle y 7→ ei in E . On the other hand, since #′ ∩ E × E = # and
α is an event trace of E ′, we have e /∈ cflE({e1, . . . , ei−1}) ∪ {e1, . . . , ei−1} and
therefore, α ∈ T (E).

Conversely, let α = e1e2 · · · en ∈ T (E), we need to show that α ∈ T (E ′). Let
z 7→′ ei be a bundle of E ′ where ei ∈ α. Since E E E ′ and ei ∈ E, we have
z 7→ e is a bundle of E and therefore z ∩ {e1, . . . , ei−1} 6= ∅. Moreover, since
#′ ∩ E × E = # and α ⊆ E, we deduce that ei /∈ cflE′({e1, . . . , ei−1}. Lastly,
that ei /∈ {e1, . . . , ei−1} follows directly from the fact that α is an event trace.
Hence, α ∈ T (E ′). ⊓⊔

Corollary 1. if E E E ′ then C(E) ⊆ C(E ′) and L(E) ⊆ L(E ′).

Corollary 2. If E0 E E1 E E2 E · · · is a increasing family of BES with limit
∪iEi then L(∪iEi) = ∪i∈NL(Ei).

Proof. It is clear from Corollary 1 that L(Ei) ⊆ L(∪iEi) and hence ∪iL(Ei) ⊆
L(∪iEi).

Conversely, let u ∈ L(∪iEi). By definition, u = (x,�x, λx) where x ∈ C(∪iEi).
By construction, the set of events of ∪iEi is ∪iEi where eachEi is the set of events
of the BES Ei. Since x is a finite subset of ∪iEi and E0 ⊆ E1 ⊆ E2 ⊆ · · · , there
exists j ∈ N such that x ⊆ Ej and hence u ∈ L(Ej) follows from Proposition 14
(that is, the order �x obtained from the BES ∪iEi coincides with the order
obtained from the BES Ej). ⊓⊔

7.3 Correspondence between our work, Varacca’s and Katoen’s

In this subsection, given a PES (E,#,≤, λ) we denote by [e] = {e′ | e′ ≤ e} and
[e) = [e] \ {e}.

Proposition 15. Given an PES E and its corresponding BES E ′, then for every
e, e′ ∈ E, e#µe

′ in E iff e#µe
′ in E ′.

Proof. Let e#µe
′ ∈ E, then [e]∪ [e′) and [e′]∪ [e) are configurations. Since e and

e′ are respectively maximal in these two configurations, we have x = [e)∪ [e′) ∈
C(E ′) which satisfies Definition 3.

Conversely, assume that x, x ∪ {e}, x ∪ {e′} ∈ C(E ′) and e#e′. By definition
of E′, [e) ⊆ x and [e′) ⊆ x. Therefore, [e) ∪ [e′) is down-closed and does not
contain any conflicting elements. Since x ∪ {e} ∈ C(E), e is not in conflict with
any element of [e′) and hence [e) ∪ [e′) ∪ {e} ∈ C(E). Similarly, we prove that
[e) ∪ [e′) ∪ {e′} ∈ C(E). ⊓⊔

Proposition 16. A cluster in the sense of Katoen [5] satisfies Definition 4.

Proof. Let K be a cluster in the sense of Katoen’s [5] and e, e′ ∈ K. Let x be a
configuration such that x∪{e} is a configuration. Then for every bundle z 7→ e′,
we have x ∩ z 6= ∅ because z 7→ e′ iff z 7→ e. Moreover, x ∩ cfl(e′) = ∅ else
that elements should be in the cluster K and hence conflicting with event e too

(this is impossible because x ∪ {e} is a configuration). Therefore, x ∪ {e′} is a
configuration and e#µe

′.

The second property of partial clusters (events of a clusters are equally
pointed) is found in Katoen’s definition and it suffices to prove that K is max-
imal. Let H be a partial cluster such that K ⊆ H and e ∈ H . By definition of
a partial cluster, e#µe

′ for every e′ ∈ K. Since e#µe
′ implies e#e′, we deduce

that e ∈ K because Katoen’s cluster contains every event that is conflicting with
all events in it. ⊓⊔

Proposition 17. Definition 4 coincides with Varacca’s partial cells on PES [11].
In particular, a cluster corresponds to a cell on PES.

Proof. Let E = (E,≤,#, λ) be a PES and E ′ = (E, 7→,#, λ) its corresponding
BES.

Let K be a cluster of E ′ as per Definition 4 and e, e′ ∈ K. We show that
K is a cell. It follows directly from the definition of transformation that that
[e) = [e′) and e#µ.

Conversely, let K be a cell of E and e, e′ ∈ K. It contains mutually immediate
conflicting events by definition of a cell. Since, [e) = [e)′, we deduce that z 7→ e
implies z 7→ e′ for every z ⊆ E. ⊓⊔

Remind that a PES is confusion free if and only if #µ is transitive and e#µe
′

implies [e) = [e′).

Proposition 18. A PES is confusion free iff its corresponding BES is confusion
free as per Definition 5.

Proof. Let E be a PES and E ′ its corresponding BES.

Assume that E is a confusion free PES and e, e′ ∈ E such that e#µe
′. Let

K be a cluster such that e′ ∈ K. By definition of a confusion free PES, e#µe
′

implies [e) = [e′) i.e. e and e′ are pointed by the same bundles. By transitivity
of #µ, e#µe

′′ for every e′′ ∈ K and therefore e ∈ K by maximality of K. Since
that is true for every cluster containing e′, we have e ∈ 〈e′〉.

We now prove the property of Proposition 7. Let e, e′ ∈ E such that e′′ ∈
〈e〉 ∩ cfl(e′) 6= ∅. Since e′′#e′, there exists e′0, e

′′
0 ∈ E such that e′′0 ≤ e′′ and

e′0 ≤ e′ and e′′0#mue′0. If e
′′
0 < e′′ then e′′0 < e because the BES is confusion free

(and hence e′′ and e are pointed by the same bundle). Hence e#e′ by heredity
of #. Else if e′′0 = e′′, then e#µe

′
0 because #µ is transitive. It follows that e#e′

by heredity of #.

Conversely, assume that E ′ is a confusion free BES and e, e′, e′′ ∈ E such that
e#µe

′ and e′#µe
′′. The first property of confusion freeness implies that e ∈ 〈e′〉

and e′ ∈ 〈e′′〉, that is, [e) = [e′) and [e′) = [e′′). Therefore, e#µe
′′ holds in the

PES E and whenever e1#µe2 holds in the BES E ′, we have [e1) = [e2) i.e. E is
confusion free. ⊓⊔

7.4 Complementary Proofs of the Algebraic Laws

Proposition 19. Let E be a regular BES. If a configuration x ∈ C(E) contains
a final event i.e. x ∩ ΦE 6= ∅ then it is maximal.

Proof. We reason by structural induction. The claim holds for the basic BES.
Let E ,F be two BES satisfying the induction hypothesis.

The case of + is clear because C(E + F) = C(E) ∪ C(F).
For (·), let x ∈ C(E · F) and assume that x contains an exit event. Since all

events in ΦE occurs before any event of F , we have x∩E ∈ C(E) (Proposition 14).
Moreover, we show similarly that x ∩ F ∈ C(F) and is maximal by induction
hypothesis. Since x ∩ F must at least contain one event from in(F), x ∩ E
necessarily contain an event from ΦE and hence x ∩ E is also maximal in E .
Therefore, x must be maximal in E · F .

For ‖, let x ∈ C(E‖F) and e, f be the fresh events introduced by the con-
struction of E‖F . Here again, we have x∩E ∈ C(E) and x∩F ∈ C(F) and since
ΦE‖F = {f} and ΦE 7→ f and ΦF 7→ f , by induction hypothesis, x∩E and x∩F
are maximal in E and F respectively and we deduce the maximality of x.

For ∗, if x ∈ C(E ∗ F) then x ∈ C(E ∗≤i F) for some i and we are back to the
case of (+) and (·). ⊓⊔

Corollary 3. Let E ,F be two regular BES, if x ∈ C(E · F) and x ∩ F 6= ∅ then
x ∩ E is maximal in E.

Proposition 10 Every regular BES is confusion free.

Proof. We reason by structural induction on the structure of E . It is clear that
the basic BES are confusion free and the first property of confusion freeness
follows directly from the fact that two events of E1 • E2, for • ∈ {+, ·, ‖}, are in
immediate conflict if an only if they are in immediate conflict in E1 or E2; or both
belongs to in(E1 • E2) and we have in(E)#in(E) for every regular BES E(resp.
they are in immediate conflict in E ∗≤iF for some i ∈ N). Let us concentrate on
the second property. Let x ∈ C(E) and e ∈ E \ x such that x ∪ {e} ∈ C(E). Let
e′ ∈ 〈e〉.

– case E = E1+E2: if e, e′ ∈ E (or F) the we are done by induction hypothesis.
Otherwise, e, e′ ∈∈ (E1 + E2) and we are done because x = ∅.

– case E = E1 · E2: then either x ∈ C(E1) and e ∈ E1 or x = xE1 ∪ xE2 for some
xE1 ∈ C(E1) and xE2 ∈ C(E2) and e ∈ E2. The result follow by induction
hypothesis.

– case E = E1‖E2: we have x = {f}∪xE1∪xE2 for some xE1 ∈ C(E1), xE2 ∈ C(E2)
and {f} = in(E1‖E2). If e ∈ E1 then xE1 ∪{e} ∈ C(E1) and the result follows
by induction hypothesis. Similarly for e ∈ E2. If {e} = ΦE then the result is
trivial because 〈e〉 = {e} i.e. e = e′.

– case E = E1 ∗ E2: by construction, there exists i ∈ N such that e is an event
of E1 ∗≤i E2. Since x ∪ {e} is a configuration, x is necessary a configuration
of E ∗≤i E2(Corollary 3). The result follows from the previous cases of (+)
and (·) and the induction hypothesis. ⊓⊔

Proposition 11. ⊑ is a precongruence i.e. for every pBES (E , π), (F , ρ) and
(G, η), if (E , π) ⊑ (F , ρ) then (E , π) • (G, η) ⊑ (F , ρ) • (G, η) (and symmetrically)
for every • ∈ {+, ·, ‖, ∗).

Proof. The case of + is clear. For ‖, Let (E , π) ⊑ (F , ρ) be witnessed by a
simulation S ⊆ C(E)×D(C(F)) and (G, η) be any pBES. We construct a relation
R ⊆ C(E‖G) × D(C(F‖G)) such that (x,Θ) ∈ R iff x = xE ∪ xG ∪ z and Θ =∑

i αiδyi∪xG∪z where (xE ,
∑

i αiδyi
) ∈ S, xG ∈ C(G) and z ∈ {{e}, {e, f}} and

e, f are the delimiters introduced by ‖. Let us show that R is indeed a simulation.

– That (∅, δ∅) ∈ R is clear.
– Let (x,Θ) ∈ R such that x = xE ∪ xG ∪ z and Θ =

∑
i αiδyi∪xG∪z. Since

(xE ,
∑

i αiδyi
) ∈ S, we have xE ⊑s yi for every i. Therefore, x ⊑ yi ∪ xG ∪ z

for every i.
– Let (x,Θ) ∈ R such that x = xE ∪ xG ∪ z and Θ =

∑
i αiδyi∪xG∪z. Let us

write ΘF =
∑

i αiδyi
. Assume that x E ∆′ in (E‖G, π ∪ η), then either the

prefix relation is obtained from π or η.
• If the step is made in E then ∆′ =

∑
e∈supp(p) p.eδx∪{e} for some p ∈ π.

In particular, xE E
∑

e∈supp(p) p.eδxE∪{e} in E and since (xE , ΘF) ∈ S,

there existsΘ′
F such thatΘFE

∗
Θ′

F and (
∑

e∈supp(p) p.eδxE∪{e}, Θ
′
F) ∈ S.

By definition of lifting, there exists ΘF ,e ∈ D(C(F)), for each e ∈
supp(p), such that (xE ∪ {e}, ΘF ,e) ∈ S and Θ′

F =
∑

e∈supp(p) p.eΘF ,e.

If ΘF ,e =
∑

j β
e
j δyj

then we consider Θe =
∑

j β
e
j δyj∪xG∪z. By definition

of R, we have (x ∪ {e}, Θe) ∈ R for every e′ ∈ supp(p) and Propo-
sition 8 implies that (∆′,

∑
e′∈supp(p) p.e

′Θe′) ∈ R and it is clear that

ΘE
∗ ∑

e′∈supp(p) p.e
′Θe′ .

• If the step is made in G then ∆′ =
∑

e∈supp(p) p.eδxE∪xG∪{e} for some
p ∈ η. As before,

xG E
∑

e∈supp(p)

p.eδxG∪{e}

and therefore Θ E
∑

i

∑
e∈supp(p) αip.eδyi∪xG∪{e}∪z = Θ′ and (∆′, Θ′) ∈

R can be deduced using Proposition 8.
– It is obvious that R preserves configuration final events.

The same simulation R can be used to prove monotonicity of · because C(E ·G) ⊆
C(E‖G). The only difference when x E.

For ∗, we use Proposition 13 (which is proved by direct simulation construc-
tion) and monotonicity of the other operators. Let E ⊑ F , we remove the local
probability for simplicity. Since F · (F ∗ G) ⊑ F ∗ G, monotonicity of sequential
composition implies E · (F ∗ G) ⊑ F · (F ∗ G) ⊑ F ∗ G. But G ⊑ F ∗ G, therefore
we have E · F ∗ G + G ⊑ F ∗ G and by Axiom (23), we have E ∗ G ⊑ F ∗ G. The
symmetric inequality follows from the left monotonicity of (·). ⊓⊔

Proposition 12 The subdistributivity laws (17,18) and (19,20) and the inter-
change law (21) hold for regular pBES modulo probabilistic simulation.

Proof. We give the complete proof for Equation (20) (Equation (18) in a sim-
ilar fashion) and (21). Two copies of E are made for the distributed expres-
sion and the fresh events introduced by each ‖ are respectively denoted by
e, e1, e2, f, f1, f2. We construct a relation

S ⊆ C(E‖(F + G)) × D(C(E1‖F + E2‖G))

such that (x,Θ) ∈ S if one of the following cases hold:

– x ∈ C(e · E) and Θ = (1− α)δx1 + αδx2 ,
– x = z ∪ xE ∪ xF such that xE ∈ C(E), xF ∈ C(F) \ {∅} and Θ = δxE1∪xF∪z1 ,
– x = z ∪ xE ∪ xG such that xE ∈ C(E), xG ∈ C(G) \ {∅} and Θ = δxE2∪xG∪z2 ,

where z ∈ {{e}, {e, f}} (resp. for zi). We show that S is indeed a probabilistic
simulation.

– It is clear that (∅, δ∅) ∈ S because ∅ ∈ C(E) and δ∅ = (1 − α)δ∅ + αδ∅.
– Let (x,Θ) ∈ S, in all three cases, we have x ⊑s y for all y ∈ supp(Θ).
– Let (x,Θ) ∈ S and x E ∆′. By definition of +, ‖ and E, there are four cases.

• supp(∆′) ⊆ C(E): since x ⊆ y for all y ∈ supp(∆′), we have x ⊆ E.
Therefore, Θ = (1 − α)δx1 + αδx2 and therefore xi E ∆′

i (the copies of
∆′). Therefore, Proposition 8 implies that Θ E (1 − α)∆′

1 + α∆′
2 and

(∆′, (1− α)∆′
1 + α∆′

2) ∈ S.
• supp(∆′) ⊆ C(F): this implies that xF 6= ∅ then the result is clear.
• supp(∆′) ⊆ C(G): as above.
• supp(∆′) = (1 − α)

∑
e∈in(F) p.eδx∪e + α

∑
e∈in(G) q.eδx∪e by definition

of F ⊕α G. By definition of R, Θ = (1−α)δx1 +αδx2 and since x1∪{e} is
a configuration for every e ∈ in(F) (reps. for G), we have ΘEΘ′ = (1−
α)

∑
e p.eδx1∪{e} + α

∑
e q.eδx2∪{e} and ∆′RΘ′ by Definition of lifting.

– Since the final events are respectively {f} and {f1, f2} for the left and right
hand side, it is clear that R satisfies the last property of a simulation.

For Equation (21), let us write e, f and e′, f ′ the respective events introduced
as delimiters in E‖F and E ′‖F ′. The delimiters of (E · E ′)‖(F · F ′) are e, f ′. We
consider the relation S ⊆ C(E‖F) · (E ′‖F ′)× (E ·E ′)‖(F ·F ′) such that (x, y) ∈ S
iff y = x\{f, e′}. It then follows easily that the probabilistic relation (x, δy) ∈ R
iff (x, y) ∈ S is indeed a simulation.

Proposition 13 The Kleene star satisfies equation (22) and the equational
implication (23).

Proof. Let S ⊆ C(E ·F+G)×D(C(F)) be a probabilistic simulation from (F , ρ) ·
(E , π) + (G, η) to (F , ρ). Again, we will leave the set of distributions π, ρ and
η implicit in this proof. By hypothesis, E · F + G ⊑ F and E ∗0 G = G ⊑ F ,
E ∗1 G = G + E · G ⊑ F and simple induction shows that E ∗≤i G ⊑ F and we
denote such simulation by S(i). Moreover, since E ∗≤i−1 G E E ∗≤i G, we can find
a family of simulations such that S(i−1) is the restriction of S(i) to E ∗≤i−1 G.
Therefore, we consider the reunion S∗ = ∪iS

(i) and show that it is indeed a
simulation from E ∗ G to F .

– It is clear that (∅, δ∅) ∈ S.
– Let (x,Θ) ∈ S. Since x and every y configurations in supp(Θ) are finite

configurations, (x,Θ) ∈ S(i) for some i and we deduce that x ⊑s y.
– Let (x,Θ) ∈ S and x E ∆′. Let i be some integer such that (x,Θ) ∈ S(i).

There are two cases:
• if supp(∆′) ⊆ C(E ∗≤i G) then we are done because S(i) is a probabilistic
simulation.

• if supp(∆′) ⊆ C(E ∗≤i+1 G) then we have (x,Θ) ∈ S(i+1) because S(i) is
the restriction of S(i+1) and we are done because S(i+1) is a simulation.

– Let (x,Θ) ∈ S and x ∩ ΦE∗G . Since x is a finite set, x ∈ C(E ∗≤i G) for some
i and the result follows form S(i). ⊓⊔

	An Event Structure Model for Probabilistic Concurrent Kleene Algebra

