Abstract
We present an analysis on the homomorphic computability of different symmetric cryptographic primitives, with the goal of understanding their characteristics with respect to the homomorphic evaluation according to the BGV scheme. Specifically, we start from the framework presented by Gentry, Halevi and Smart for evaluating AES. We provide an improvement of it, then we perform a detailed evaluation on the homomorphic computation of cryptographic algorithms of different families (Salsa20 stream cipher, SHA-256 hash function and Keccak sponge function). After the analysis, we report the performance results of the primitives we have implemented using the recently released HElib. In the conclusions we discuss our findings for the different primitives we have analyzed to draw a general conclusion on the homomorphic evaluation of symmetric cryptographic primitives.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Rivest, R., Adleman, L., Dertouzos, M.: On data banks and privacy homomorphisms, pp. 169–177. Academic Press (1978)
Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher, M. (ed.) STOC, pp. 169–178. ACM (2009)
van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010)
Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) lwe. In: Ostrovsky, R. (ed.) FOCS, pp. 97–106. IEEE (2011)
Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011)
López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption. IACR Cryptology ePrint Archive
Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical gapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 868–886. Springer, Heidelberg (2012)
Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryption without bootstrapping. In: Goldwasser, S. (ed.) ITCS, pp. 309–325. ACM (2012)
Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the aes circuit. IACR Cryptology ePrint Archive
Halevi, S., Shoup, V.: HElib (2013), http://github.com/shaih/HElib
Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 465–482. Springer, Heidelberg (2012)
Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with relatively small key and ciphertext sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 420–443. Springer, Heidelberg (2010)
Smart, N., Vercauteren, F.: Fully homomorphic simd operations. IACR Cryptology ePrint Archive
National Institute for Science, Technology (NIST): Advanced Encryption Standard (FIPS PUB 197) (November 2001), http://www.csrc.nist.gov/publications/fips/fips197/fips-197.pdf
Daemen, J., Rijmen, V.: The block cipher rijndael. In: Schneier, B., Quisquater, J.-J. (eds.) CARDIS 1998. LNCS, vol. 1820, pp. 277–284. Springer, Heidelberg (2000)
Boyar, J., Peralta, R.: A depth-16 circuit for the aes s-box. IACR Cryptology ePrint Archive
National Institute for Science, Technology (NIST): Secure hash standard (shs) (fips pub 180-4) (March 2012), http://csrc.nist.gov/publications/PubsFIPS.html
Merkle, R.: Secrecy, authentication, and public key systems. PhD thesis, Stanford University (1979)
Bernstein, D.J.: The salsa20 family of stream ciphers. In: Robshaw, M., Billet, O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 84–97. Springer, Heidelberg (2008)
Bernstein, D.J.: Salsa20 specification (2005), http://cr.yp.to/snuffle/spec.pdf
Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: The Keccak reference (2011), http://keccak.noekeon.org
Bertoni, G., Daemen, J., Peeters, M., Assche, G.V., Keer, R.V.: Keccak implementation overview (2012), http://keccak.noekeon.org
Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Cryptographic sponge functions (2011), http://keccak.noekeon.org
Lenstra, A.K., Verheul, E.R.: Selecting cryptographic key sizes. J. Cryptology 14(4), 255–293 (2001)
Halevi, S., Shoup, V.: HElib (2013), http://github.com/shaih/HElib/blob/master/doc/designDocument/HElibrary.pdf
Rivest, R.: Rfc 1321: The md5 message-digest algorithm (1992), http://tools.ietf.org/html/rfc1321
Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas, J., Walker, J.: The skein hash function family (2010), http://www.skein-hash.info/sites/default/files/skein1.3.pdf
Wu, H.: The stream cipher hc-128 (2004), http://www.ecrypt.eu.org/stream/p3ciphers/hc/hc128_p3.pdf
Aumasson, J.P., Henzen, L., Meier, W., Phan, R.C.: Sha-3 proposal blake (2010), https://131002.net/blake/blake.pdf
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mella, S., Susella, R. (2013). On the Homomorphic Computation of Symmetric Cryptographic Primitives. In: Stam, M. (eds) Cryptography and Coding. IMACC 2013. Lecture Notes in Computer Science, vol 8308. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45239-0_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-45239-0_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-45238-3
Online ISBN: 978-3-642-45239-0
eBook Packages: Computer ScienceComputer Science (R0)