Skip to main content

Linear-Time Self-stabilizing Algorithms for Minimal Domination in Graphs

  • Conference paper
Combinatorial Algorithms (IWOCA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8288))

Included in the following conference series:

Abstract

A distributed system is self-stabilizing if, regardless of the initial state, the system is guaranteed to reach a legitimate (correct) state in finite time. In 2007, Turau proposed the first linear-time self-stabilizing algorithm for the minimal dominating set (MDS) problem under an unfair distributed daemon [6]; this algorithm stabilizes in at most 9n moves, where n is the number of nodes. In 2008, Goddard et al. [2] proposed a 5n-move algorithm. In this paper, we present a 4n-move algorithm. We also prove that if an MDS-silent algorithm is preferred, then distance-1 knowledge is insufficient, where a self-stabilizing MDS algorithm is MDS-silent if it will not make any move when the starting configuration of the system is already an MDS.

This research was partially supported by the National Science Council of the Republic of China under the grants grant NSC100-2115-M-009-004-MY2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Communication of the ACM 17(11), 643–644 (1974)

    Article  MATH  Google Scholar 

  2. Goddard, W., Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K., Xu, Z.: Self-stabilizing graph protocols. Parallel Processing Letters 18(1), 189–199 (2008)

    Article  MathSciNet  Google Scholar 

  3. Guellati, N., Kheddouci, H.: A survey on self-stabilizing algorithms for independent, domination, coloring, and matching in graphs. Journal Parallel and Distributed Computing 70(4), 406–415 (2010)

    Article  MATH  Google Scholar 

  4. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in Graphs. Marcel Dekker (1998)

    Google Scholar 

  5. Hedetniemi, S.M., Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Self-stabilizing algorithms for minimal dominating sets and maximal independent sets. Computer Mathematics and Applications 46(5–6), 805–811 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Turau, V.: Linear self-stabilizing algorithms for the independent and dominating set problems using an unfair distributed scheduler. Information Processing Letters 103(3), 88–93 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Xu, Z., Hedetniemi, S.T., Goddard, W., Srimani, P.K.: A synchronous self-stabilizing minimal domination protocol in an arbitrary network graph. In: Das, S.R., Das, S.K. (eds.) IWDC 2003. LNCS, vol. 2918, pp. 26–32. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Turau, V.: Efficient transformation of distance-2 self-stabilizing algorithms. Journal of Parallel and Distributed Computing 72, 603–612 (2012)

    Article  MATH  Google Scholar 

  9. Gairing, M., Goddard, W., Hedetniemi, S.T., Kristiansen, P., McRae, A.A.: Distance-two information in self-stabilizing algorithms. Parallel Processing Letters 14(3–4), 387–398 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chiu, W.Y., Chen, C. (2013). Linear-Time Self-stabilizing Algorithms for Minimal Domination in Graphs. In: Lecroq, T., Mouchard, L. (eds) Combinatorial Algorithms. IWOCA 2013. Lecture Notes in Computer Science, vol 8288. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45278-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45278-9_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45277-2

  • Online ISBN: 978-3-642-45278-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics