Abstract
A PageRank uniform digraph is a digraph whose vertices have all the same PageRank score. These digraphs are interesting in the scope of privacy preserving release of digraph data in environments where a dishonest analyst may have previous structural knowledge about the PageRank score of some vertices. In this paper we first characterize PageRank uniform graphs (viewed as symmetric digraphs) and their degree sequence. Next, given a sequence of prime integers S, we give necessary and sufficient conditions for S to be the outdegree sequence of a PageRank uniform digraph.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chartrand, G., Lesniak, L.: Graphs & Digraphs, 4th edn. CRC Press, Boca Raton (2004)
Conde, J., López, N., Sebé, F.: PageRank regular digraphs with prime out-degrees. In: Proc. of 5th Intl. Workshop on Optimal Network Topologies (in press, 2013)
Cheng, J., Fu, A.W.-C., Liu, J.: K-Isomorphism: privacy preserving network publication against structural attacks. In: Proc. of SIGMOD 2010 (2010)
Fulkerson, D.R.: Zero-one matrices with zero traces. Pacific J. Math. 10, 831–836 (1960)
Hakimi, S.L.: On the realizability of a set of integers as degrees of the vertices of a graph. J. SIAM Appl. Math. 10, 496–506 (1962)
Hakimi, S.L., Schmeichel, E.F.: Graphs and their degree sequences: a survey. Theory and applications of graphs, pp. 225–235 (1976)
Havel, V.: A remark on the existence of finite graphs. Časopis Pěst. Mat. 80, 477–480 (1955)
Langville, A.N., Meyer, C.D.: Deeper inside pagerank. Internet Mathematics 1(3), 335–380 (2004)
Liu, K., Terzi, E.: Towards identity anonymization on graphs. In: Proc. of SIGMOD 2008 (2008)
López, N., Sebé, F.: Privacy-preserving release of blogosphere data in the presence of search engines. Inf. Processing and Management 49, 833–851 (2013)
Meyer, C.D.: Matrix analysis and applied linear algebra. SIAM: Society for Industrial and Applied Mathematics (2001)
Nash-Williams, C.S.J.A.: Hamilton circuits in graphs and digraphs. In: The Many Facets of Graph Theory, pp. 237–243. Springer (1968)
Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: bringing order to the web. Technical Report, Stanford InfoLab (1998)
Ryser, H.: Combinatorial Mathematics. Wiley, New York (1963)
Scott, J.: Social network analysis handbook. Sage Publications Inc. (2000)
Stokes, K., Torra, V.: n-Confusion: a generalization of k-anonymity. In: Proc. of 5th Intl. Workshop on Privacy and Anonymity in the Information Society (2012)
Wu, W., Xiao, Y., Wang, W., He, Z., Wang, Z.: K-Symmetry model for identity anonymization in social networks. In: Proc. of EDBT 2010 (2010)
Zhou, B., Pei, J.: Preserving privacy in social networks against neighborhood attacks. In: Proc. of ICDE 2008, pp. 506–515 (2008)
Zhou, B., Pei, J., Luk, W.-S.: A brief survey on anonymization techniques for privacy preserving publishing of social network data. ACM SIGKDD Explorations Newsletter 10(2), 12–22 (2008)
Zou, L., Chen, L., Öszu, M.T.: K-Automorphism: a general framework for privacy preserving network publication. In: Proc. of VLDB 2009 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
López, N., Sebé, F. (2013). Degree Sequences of PageRank Uniform Graphs and Digraphs with Prime Outdegrees. In: Lecroq, T., Mouchard, L. (eds) Combinatorial Algorithms. IWOCA 2013. Lecture Notes in Computer Science, vol 8288. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45278-9_26
Download citation
DOI: https://doi.org/10.1007/978-3-642-45278-9_26
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-45277-2
Online ISBN: 978-3-642-45278-9
eBook Packages: Computer ScienceComputer Science (R0)