Skip to main content

On Complexity of Flooding Games on Graphs with Interval Representations

  • Conference paper
Computational Geometry and Graphs (TJJCCGG 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8296))

Included in the following conference series:

  • 579 Accesses

Abstract

The flooding games, which are called Flood-It, Mad Virus, or HoneyBee, are a kind of coloring games and they have been becoming popular online. In these games, each player colors one specified cell in his/her turn, and all connected neighbor cells of the same color are also colored by the color. This flooding or coloring spreads on the same color cells. It is natural to consider the coloring games on general graphs: Once a vertex is colored, the flooding flows along edges in the graph. Recently, computational complexities of the variants of the flooding games on several graph classes have been studied. We investigate the one player flooding games on some graph classes characterized by interval representations. Our results state that the number of colors is a key parameter to determine the computational complexity of the flooding games.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arthur, D., Clifford, R., Jalsenius, M., Montanaro, A., Sach, B.: The Complexity of Flood Filling Games. In: Boldi, P. (ed.) FUN 2010. LNCS, vol. 6099, pp. 307–318. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  2. Bogart, K.P., West, D.B.: A short proof that ‘proper=unit’. Discrete Mathematics 201, 21–23 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Clifford, R., Jalsenius, M., Montanaro, A., Sach, B.: The Complexity of Flood Filling Games. Theory of Computing Systems 50, 72–92 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fukui, H., Nakanishi, A., Uehara, R., Uno, T., Uno, Y.: The Complexity of Free Flood Filling Game. In: WAAC 2011, pp. 51–56 (2011)

    Google Scholar 

  5. Fukui, H., Otachi, Y., Uehara, R., Uno, T., Uno, Y.: On Complexity of Flooding Games on Graphs with Interval Representations. arXiv:1206.6201 (January 28, 2013)

    Google Scholar 

  6. Fleischer, R., Woeginger, G.J.: An algorithmic analysis of the Honey-Bee game. Theoretical Computer Science 452, 75–87 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Garey, M.R., Johnson, D.S.: Computers and Intractability — A Guide to the Theory of NP-Completeness. Freeman (1979)

    Google Scholar 

  8. Korte, N., Möhring, R.H.: An Incremental Linear-Time Algorithm for Recognizing Interval Graphs. SIAM Journal on Computing 18(1), 68–81 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lagoutte, A.: 2-Free-Flood-It is polynomial. Technical report, arXiv:1008.3091v1 (2010)

    Google Scholar 

  10. Lagoutte, A., Naual, M., Thierry, E.: Flooding games on graphs. In: Latin-American Algorithms, Graphs and Optimization Symposium (LAGOS 2011) (2011)

    Google Scholar 

  11. Meeks, K., Scott, A.: The complexity of Free-Flood-It on 2×n boards. arXiv:1101.5518v1 (January 2011)

    Google Scholar 

  12. Meeks, K., Scott, A.: Spanning Trees and the Complexity of Flood-Filling Games. In: Kranakis, E., Krizanc, D., Luccio, F. (eds.) FUN 2012. LNCS, vol. 7288, pp. 282–292. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  13. Meeks, K., Scott, A.: The complexity of flood-filling games on graphs. Discrete Applied Mathematics 160(7-8), 959–969 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Roberts, F.S.: Indifference graphs. In: Harary, F. (ed.) Proof Techniques in Graph Theory, pp. 139–146. Academic Press (1969)

    Google Scholar 

  15. Saitoh, T., Yamanaka, K., Kiyomi, M., Uehara, R.: Random Generation and Enumeration of Proper Interval Graphs. IEICE Transactions on Information and Systems E93-D(7), 1816–1823 (2010)

    Google Scholar 

  16. Uehara, R., Uno, Y.: On Computing Longest Paths in Small Graph Classes. International Journal of Foundations of Computer Science 18(5), 911–930 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fukui, H., Otachi, Y., Uehara, R., Uno, T., Uno, Y. (2013). On Complexity of Flooding Games on Graphs with Interval Representations. In: Akiyama, J., Kano, M., Sakai, T. (eds) Computational Geometry and Graphs. TJJCCGG 2012. Lecture Notes in Computer Science, vol 8296. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45281-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45281-9_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45280-2

  • Online ISBN: 978-3-642-45281-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics