Abstract
Deduplication technology has been increasingly used to reduce the storage cost. In practice, the duplicate detection upon large on-disk index incurs unavoidable and significant overheads in write operations. Most existing deduplication methods perform single-pass processing, while pay little attention to develop highly parallel methods for the emerging parallel processors. In this paper, we present the design of G-Paradex, a novel deduplication framework that can significantly reduce the duplicate detecting time. Utilizing a prefix tree to organize the chunk fingerprints, G-Paradex is able to do fast deduplicating by using GPU to search the target tree in parallel. Leveraging the inherent chunk locality in writing data stream, we group consecutive chunks and extract the handprints into the prefix tree, aiming at shrinking the index size and reducing the on-disk accesses. Our experimental evaluation based on real-world datasets demonstrate that, compared with the traditional single-pass method, G-aparadex achieves a speedup of 2-4X for duplicate detecting.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Srinivasan, K., Bisson, T., Goodson, G., Voruganti, K.: idedup: latency-aware, inline data deduplication for primary storage. In: Proceedings of the 10th USENIX Conference on File and Storage Technologies, FAST 2012, p. 24. USENIX Association, Berkeley (2012)
Geer, D.: Reducing the storage burden via data deduplication. Computer 41(12), 15–17 (2008)
Zhu, B., Li, K., Patterson, H.: Avoiding the disk bottleneck in the data domain deduplication file system. In: Proceedings of the 6th USENIX Conference on File and Storage Technologies. FAST 2008, pp. 18:1–18:14. USENIX Association, Berkeley (2008)
Bhagwat, D., Eshghi, K., Long, D.D., Lillibridge, M.: Extreme binning: Scalable, parallel deduplication for chunk-based file backup. In: IEEE International Symposium on Modeling, Analysis & Simulation of Computer and Telecommunication Systems, MASCOTS 2009, pp. 1–9. IEEE (2009)
Fu, Y., Jiang, H., Xiao, N.: A scalable inline cluster deduplication framework for big data protection. In: Narasimhan, P., Triantafillou, P. (eds.) Middleware 2012. LNCS, vol. 7662, pp. 354–373. Springer, Heidelberg (2012)
Xia, W., Jiang, H., Feng, D., Hua, Y.: Silo: a similarity-locality based near-exact deduplication scheme with low ram overhead and high throughput. In: Proceedings of the 2011 USENIX Conference on USENIX Annual Technical Conference, USENIXATC 2011, pp. 26–28. USENIX Association, Berkeley (2011)
Lillibridge, M., Eshghi, K., Bhagwat, D., Deolalikar, V., Trezise, G., Camble, P.: Sparse indexing: large scale, inline deduplication using sampling and locality. In: Proccedings of the 7th Conference on File and Storage Technologies, FAST 2009, pp. 111–123. USENIX Association, Berkeley (2009)
Asanovic, K., Bodik, R., Catanzaro, B.C., Gebis, J.J., Husbands, P., Keutzer, K., Patterson, D.A., Plishker, W.L., Shalf, J., Williams, S.W., et al.: The landscape of parallel computing research: A view from berkeley. Technical report, Technical Report UCB/EECS-2006-183, EECS Department, University of California, Berkeley (2006)
Bhatotia, P., Rodrigues, R., Verma, A.: Shredder: Gpu-accelerated incremental storage and computation. In: Proceedings of the 10th USENIX Conference on File and Storage Technologies, FAST 2012, p. 14. USENIX Association, Berkeley (2012)
Xia, W., Jiang, H., Feng, D., Tian, L., Fu, M., Wang, Z.: P-dedupe: Exploiting parallelism in data deduplication system. In: Proceedings of the 2012 IEEE Seventh International Conference on Networking, Architecture, and Storage, NAS 2012, pp. 338–347. IEEE Computer Society, Washington, DC (2012)
Dal Bianco, G., Galante, R., Heuser, C.A.: A fast approach for parallel deduplication on multicore processors. In: Proceedings of the 2011 ACM Symposium on Applied Computing, SAC 2011, pp. 1027–1032. ACM, New York (2011)
Bhattacherjee, S., Narang, A., Garg, V.K.: High throughput data redundancy removal algorithm with scalable performance. In: Proceedings of the 6th International Conference on High Performance and Embedded Architectures and Compilers, HiPEAC 2011, pp. 87–96. ACM, New York (2011)
Rao, J., Ross, K.A.: Making b+- trees cache conscious in main memory. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, SIGMOD 2000, pp. 475–486. ACM, New York (2000)
Bayer, R., McCreight, E.: Organization and maintenance of large ordered indexes, pp. 245–262. Springer-Verlag New York, Inc., New York (2002)
Lehman, T.J., Carey, M.J.: A study of index structures for main memory database management systems. In: Proceedings of the 12th International Conference on Very Large Data Bases, VLDB 1986, pp. 294–303. Morgan Kaufmann Publishers Inc., San Francisco (1986)
Boehm, M., Schlegel, B., Volk, P.B., Fischer, U., Habich, D., Lehner, W.: Efficient in-memory indexing with generalized prefix trees, BTW (2011)
Kim, C., Chhugani, J., Satish, N., Sedlar, E., Nguyen, A.D., Kaldewey, T., Lee, V.W., Brandt, S.A., Dubey, P.: Fast: fast architecture sensitive tree search on modern cpus and gpus. In: Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data, SIGMOD 2010, pp. 339–350. ACM, New York (2010)
Volk, P.B., Habich, D., Lehner, W.: Gpu-based speculative query processing for database operations. In: Proceedings of the 1st International Workshop on Accelerating Data Management Systems Using Modern Processor and Storage Architectures (2010)
Nvidia cuda, http://developer.nvidia.com/cuda-downloads
Broder, A.: On the resemblance and containment of documents. In: Proceedings of the Compression and Complexity of Sequences, SEQUENCES 1997, pp. 21–29. IEEE Computer Society, Los Alamitos (1997)
Koller, R., Rangaswami, R.: I/o deduplication: utilizing content similarity to improve i/o performance. In: Proceedings of the 8th USENIX Conference on File and Storage Technologies, FAST 2010, p. 16. USENIX Association, Berkeley (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lin, B., Liao, X., Li, S., Wang, Y., Huang, H., Wen, L. (2013). G-Paradex: GPU-Based Parallel Indexing for Fast Data Deduplication. In: Wu, C., Cohen, A. (eds) Advanced Parallel Processing Technologies. APPT 2013. Lecture Notes in Computer Science, vol 8299. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45293-2_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-45293-2_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-45292-5
Online ISBN: 978-3-642-45293-2
eBook Packages: Computer ScienceComputer Science (R0)