Skip to main content

G-Paradex: GPU-Based Parallel Indexing for Fast Data Deduplication

  • Conference paper
Advanced Parallel Processing Technologies (APPT 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8299))

Included in the following conference series:

  • 1475 Accesses

Abstract

Deduplication technology has been increasingly used to reduce the storage cost. In practice, the duplicate detection upon large on-disk index incurs unavoidable and significant overheads in write operations. Most existing deduplication methods perform single-pass processing, while pay little attention to develop highly parallel methods for the emerging parallel processors. In this paper, we present the design of G-Paradex, a novel deduplication framework that can significantly reduce the duplicate detecting time. Utilizing a prefix tree to organize the chunk fingerprints, G-Paradex is able to do fast deduplicating by using GPU to search the target tree in parallel. Leveraging the inherent chunk locality in writing data stream, we group consecutive chunks and extract the handprints into the prefix tree, aiming at shrinking the index size and reducing the on-disk accesses. Our experimental evaluation based on real-world datasets demonstrate that, compared with the traditional single-pass method, G-aparadex achieves a speedup of 2-4X for duplicate detecting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Srinivasan, K., Bisson, T., Goodson, G., Voruganti, K.: idedup: latency-aware, inline data deduplication for primary storage. In: Proceedings of the 10th USENIX Conference on File and Storage Technologies, FAST 2012, p. 24. USENIX Association, Berkeley (2012)

    Google Scholar 

  2. Geer, D.: Reducing the storage burden via data deduplication. Computer 41(12), 15–17 (2008)

    Article  Google Scholar 

  3. Zhu, B., Li, K., Patterson, H.: Avoiding the disk bottleneck in the data domain deduplication file system. In: Proceedings of the 6th USENIX Conference on File and Storage Technologies. FAST 2008, pp. 18:1–18:14. USENIX Association, Berkeley (2008)

    Google Scholar 

  4. Bhagwat, D., Eshghi, K., Long, D.D., Lillibridge, M.: Extreme binning: Scalable, parallel deduplication for chunk-based file backup. In: IEEE International Symposium on Modeling, Analysis & Simulation of Computer and Telecommunication Systems, MASCOTS 2009, pp. 1–9. IEEE (2009)

    Google Scholar 

  5. Fu, Y., Jiang, H., Xiao, N.: A scalable inline cluster deduplication framework for big data protection. In: Narasimhan, P., Triantafillou, P. (eds.) Middleware 2012. LNCS, vol. 7662, pp. 354–373. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  6. Xia, W., Jiang, H., Feng, D., Hua, Y.: Silo: a similarity-locality based near-exact deduplication scheme with low ram overhead and high throughput. In: Proceedings of the 2011 USENIX Conference on USENIX Annual Technical Conference, USENIXATC 2011, pp. 26–28. USENIX Association, Berkeley (2011)

    Google Scholar 

  7. Lillibridge, M., Eshghi, K., Bhagwat, D., Deolalikar, V., Trezise, G., Camble, P.: Sparse indexing: large scale, inline deduplication using sampling and locality. In: Proccedings of the 7th Conference on File and Storage Technologies, FAST 2009, pp. 111–123. USENIX Association, Berkeley (2009)

    Google Scholar 

  8. Asanovic, K., Bodik, R., Catanzaro, B.C., Gebis, J.J., Husbands, P., Keutzer, K., Patterson, D.A., Plishker, W.L., Shalf, J., Williams, S.W., et al.: The landscape of parallel computing research: A view from berkeley. Technical report, Technical Report UCB/EECS-2006-183, EECS Department, University of California, Berkeley (2006)

    Google Scholar 

  9. Bhatotia, P., Rodrigues, R., Verma, A.: Shredder: Gpu-accelerated incremental storage and computation. In: Proceedings of the 10th USENIX Conference on File and Storage Technologies, FAST 2012, p. 14. USENIX Association, Berkeley (2012)

    Google Scholar 

  10. Xia, W., Jiang, H., Feng, D., Tian, L., Fu, M., Wang, Z.: P-dedupe: Exploiting parallelism in data deduplication system. In: Proceedings of the 2012 IEEE Seventh International Conference on Networking, Architecture, and Storage, NAS 2012, pp. 338–347. IEEE Computer Society, Washington, DC (2012)

    Chapter  Google Scholar 

  11. Dal Bianco, G., Galante, R., Heuser, C.A.: A fast approach for parallel deduplication on multicore processors. In: Proceedings of the 2011 ACM Symposium on Applied Computing, SAC 2011, pp. 1027–1032. ACM, New York (2011)

    Google Scholar 

  12. Bhattacherjee, S., Narang, A., Garg, V.K.: High throughput data redundancy removal algorithm with scalable performance. In: Proceedings of the 6th International Conference on High Performance and Embedded Architectures and Compilers, HiPEAC 2011, pp. 87–96. ACM, New York (2011)

    Google Scholar 

  13. Rao, J., Ross, K.A.: Making b+- trees cache conscious in main memory. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, SIGMOD 2000, pp. 475–486. ACM, New York (2000)

    Chapter  Google Scholar 

  14. Bayer, R., McCreight, E.: Organization and maintenance of large ordered indexes, pp. 245–262. Springer-Verlag New York, Inc., New York (2002)

    Google Scholar 

  15. Lehman, T.J., Carey, M.J.: A study of index structures for main memory database management systems. In: Proceedings of the 12th International Conference on Very Large Data Bases, VLDB 1986, pp. 294–303. Morgan Kaufmann Publishers Inc., San Francisco (1986)

    Google Scholar 

  16. Boehm, M., Schlegel, B., Volk, P.B., Fischer, U., Habich, D., Lehner, W.: Efficient in-memory indexing with generalized prefix trees, BTW (2011)

    Google Scholar 

  17. Kim, C., Chhugani, J., Satish, N., Sedlar, E., Nguyen, A.D., Kaldewey, T., Lee, V.W., Brandt, S.A., Dubey, P.: Fast: fast architecture sensitive tree search on modern cpus and gpus. In: Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data, SIGMOD 2010, pp. 339–350. ACM, New York (2010)

    Chapter  Google Scholar 

  18. Volk, P.B., Habich, D., Lehner, W.: Gpu-based speculative query processing for database operations. In: Proceedings of the 1st International Workshop on Accelerating Data Management Systems Using Modern Processor and Storage Architectures (2010)

    Google Scholar 

  19. Nvidia cuda, http://developer.nvidia.com/cuda-downloads

  20. Broder, A.: On the resemblance and containment of documents. In: Proceedings of the Compression and Complexity of Sequences, SEQUENCES 1997, pp. 21–29. IEEE Computer Society, Los Alamitos (1997)

    Google Scholar 

  21. Koller, R., Rangaswami, R.: I/o deduplication: utilizing content similarity to improve i/o performance. In: Proceedings of the 8th USENIX Conference on File and Storage Technologies, FAST 2010, p. 16. USENIX Association, Berkeley (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lin, B., Liao, X., Li, S., Wang, Y., Huang, H., Wen, L. (2013). G-Paradex: GPU-Based Parallel Indexing for Fast Data Deduplication. In: Wu, C., Cohen, A. (eds) Advanced Parallel Processing Technologies. APPT 2013. Lecture Notes in Computer Science, vol 8299. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45293-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45293-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45292-5

  • Online ISBN: 978-3-642-45293-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics