Abstract
We investigate algorithmic control of a large swarm of mobile particles (such as robots, sensors, or building material) that move in a 2D workspace using a global input signal such as gravity or a magnetic field. Upon activation of the field, each particle moves maximally in the same direction, until it hits a stationary obstacle or another stationary particle. In an open workspace, this system model is of limited use because it has only two controllable degrees of freedom—all particles receive the same inputs and move uniformly. We show that adding a maze of obstacles to the environment can make the system drastically more complex but also more useful. The resulting model matches ThinkFun’s Tilt puzzle.
If we are given a fixed set of stationary obstacles, we prove that it is NP-hard to decide whether a given initial configuration can be transformed into a desired target configuration. On the positive side, we provide constructive algorithms to design workspaces that efficiently implement arbitrary permutations between different configurations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abelson, H., Allen, D., Coore, D., Hanson, C., Homsy, G., Thomas, J., Knight, F., Nagpal, R., Rauch, E., Sussman, G.J., Weiss, R.: Amorphous computing. Commun. ACM 43(5), 74–82 (2000)
Akella, S., Huang, W.H., Lynch, K.M., Mason, M.T.: Parts feeding on a conveyor with a one joint robot. Algorithmica 26(3), 313–344 (2000)
Akella, S., Mason, M.T.: Using partial sensor information to orient parts. Int. J. Robot. Res. 18(10), 963–997 (1999)
Becker, A., Bretl, T.: Approximate steering of a unicycle under bounded model perturbation using ensemble control. IEEE Trans. Robot. 28(3), 580–591 (2012)
Becker, A., Habibi, G., Werfel, J., Rubenstein, M., McLurkin, J.: Massive uniform manipulation: controlling large populations of simple robots with a common input signal. In: IEEE International Conference on Intelligent Robots and Systems, pp. 520–527, November 2013
Becker, A., Onyuksel, C., Bretl, T.: Feedback control of many differential-drive robots with uniform control inputs. In: IEEE International Conference on Intelligent Robots and Systems, October 2012
Becker, A., Ou, Y., Kim, P., Kim, M., Julius, A.: Feedback control of many magnetized tetrahymena pyriformis cells by exploiting phase inhomogeneity. In: IEEE International Conference on Intelligent Robots and Systems, pp. 3317–3323, November 2013
Chanu, A., Felfoul, O., Beaudoin, G., Martel, S.: Adapting the clinical mri software environment for real-time navigation of an endovascular untethered ferromagnetic bead for future endovascular interventions. Magn. Reson. Med. 59(6), 1287–1297 (2008)
Chiang, P.-T., Mielke, J., Godoy, J., Guerrero, J.M., Alemany, L.B., Villagómez, C.J., Saywell, A., Grill, L., Tour, J.M.: Toward a light-driven motorized nanocar: Synthesis and initial imaging of single molecules. ACS Nano 6(1), 592–597 (2011)
Demaine, E.D., Demaine, M.L., O’Rourke, J.: PushPush and Push-1 are NP-hard in 2D. In: Proceedings of the 12th Annual Canadian Conference on Computational Geometry (CCCG), pp. 211–219, August 2000
Demaine, E.D., Hearn, R.A.: Playing games with algorithms: algorithmic combinatorial game theory. In: Albert, M.H., Nowakowski, R.J. (eds.) Games of No Chance 3, vol. 56, pp. 3–56. Mathematical Sciences Research Institute Publications, Cambridge University Press, Cambridge (2009)
Donald, B.R., Levey, C.G., Paprotny, I., Rus, D.: Planning and control for microassembly of structures composed of stress-engineered mems microrobots. Int. J. Robot. Res. 32(2), 218–246 (2013)
Dor, D., Zwick, U.: Sokoban and other motion planning problems. Comput. Geom. 13(4), 215–228 (1999)
Engels, B., Kamphans, T.: On the complexity of Randolph’s robot game. Technical report, Rheinische Friedrich-Wilhelms-Universität Bonn Institut für Informatik I, University of Cologne, Germany (2005)
Erdmann, M., Mason, M.: An exploration of sensorless manipulation. IEEE J. Robot. Autom. 4(4), 369–379 (1988)
Fekete S.P., Kröller, A.: Geometry-based reasoning for a large sensor network. In: Proceedings of the 22nd Annual ACM Symposium on Computational Geometry, pp. 475–476 (2006). http://www.computational-geometry.org/SoCG-videos/socg06video/acmvideos/socg06video/
Fekete, S.P., Kröller, A.: Topology and routing in sensor networks. In: Kutyłowski, M., Cichoń, J., Kubiak, P. (eds.) ALGOSENSORS 2007. LNCS, vol. 4837, pp. 6–15. Springer, Heidelberg (2008)
Fekete, S.P., Kröller, A., Pfisterer, D., Fischer, S., Buschmann, C.: Neighborhood-based topology recognition in sensor networks. In: Nikoletseas, S.E., Rolim, J. (eds.) ALGOSENSORS 2004. LNCS, vol. 3121, pp. 123–136. Springer, Heidelberg (2004)
Floyd, S., Diller, E., Pawashe, C., Sitti, M.: Control methodologies for a heterogeneous group of untethered magnetic micro-robots. Int. J. Robot. Res. 30(13), 1553–1565 (2011)
Frutiger, D., Kratochvil, B., Vollmers, K., Nelson, B.J.: Magmites - wireless resonant magnetic microrobots. In: IEEE International Conference on Robotics and Automation, Pasadena, CA, May 2008
Goemans, O.C., Goldberg, K., van der Stappen, A.F.: Blades: a new class of geometric primitives for feeding 3D parts on vibratory tracks. In: International Conference on Robotics and Automation, pp. 1730–1736, May 2006
Goldberg, K., Mirtich, B.V., Zhuang, Y., Craig, J., Carlisle, B.R., Canny, J.: Part pose statistics: estimators and experiments. IEEE Trans. Robot. Autom. 15(5), 849–857 (1999)
Goldberg, K.Y.: Orienting polygonal parts without sensors. Algorithmica 10(2), 201–225 (1993)
Hearn R.A., Demaine, E.D.: PSPACE-completeness of sliding-block puzzles and other problems through the nondeterministic constraint logic model of computation. arXiv:cs/0205005, cs.CC/0205005 (2002)
Hoffmann, M.: Motion planning amidst movable square blocks: Push-* is NP-hard. In: Canadian Conference on Computational Geometry, pp. 205–210, June 2000
Holzer, M., Schwoon, S.: Assembling molecules in atomix is hard. Theoret. Comput. Sci. 313(3), 447–462 (2004)
Kahn, J., Katz, R., Pister, K.: Emerging challenges: mobile networking for smart dust. J. Comm. Net. 2, 188–196 (2000)
Khalil, I.S.M., Pichel, M.P., Reefman, B.A., Sukas, O.S., Abelmann, L., Misra, S.: Control of magnetotactic bacterium in a micro-fabricated maze. In: IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, pp. 5488–5493, May 2013
Kröller, A., Fekete, S.P., Pfisterer, D., Fischer, S.: Deterministic boundary recognition and topology extraction for large sensor networks. In: Proceedings of the 17th ACM-SIAM Symposium Discrete Algorithms, pp. 1000–1009 (2006)
Leighton, F.T.: Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes. Morgan Kaufmann, San Mateo (1991)
Lynch, K.M., Northrop, M., Pan, P.: Stable limit sets in a dynamic parts feeder. IEEE Trans. Robot. Autom. 18(4), 608–615 (2002)
Moll, M., Erdmann, M.: Manipulation of pose distributions. Int. J. Robot. Res. 21(3), 277–292 (2002)
Murphey, T.D., Bernheisel, J., Choi, D., Lynch, K.M.: An example of parts handling and self-assembly using stable limit sets. In: International Conference on Robots and System, pp. 1624–1629, August 2005
Murphey, T.D., Burdick, J.W.: Feedback control methods for distributed manipulation systems that involve mechanical contacts. Int. J. Robot. Res. 23(7–8), 763–781 (2004)
Ou, Y., Kim, D.H., Kim, P., Kim, M.J., Julius, A.A.: Motion control of magnetized tetrahymena pyriformis cells by magnetic field with model predictive control. Int. J. Rob. Res. 32(1), 129–139 (2013)
Peyer, K.E., Zhang, L., Nelson, B.J.: Bio-inspired magnetic swimming microrobots for biomedical applications. Nanoscale 5, 1259–1272 (2013)
Rubenstein, M., Ahler, C., Nagpal, R.: Kilobot: a low cost scalable robot system for collective behaviors. In: IEEE International Conference on Robotics and Automation, pp. 3293–3298, May 2012
ThinkFun. Tilt: Gravity fed logic maze. http://www.thinkfun.com/tilt
van der Stappen, A.F., Berretty, R.-P., Goldberg, K., Overmars, M.: Geometry and part feeding. In: Hager, G.D., Christensen, H.I., Bunke, H., Klein, R. (eds.) Sensor Based Intelligent Robots. LNCS, vol. 2238, pp. 259–281. Springer, Heidelberg (2002)
Vartholomeos, P., Akhavan-Sharif, M., Dupont, P.E.: Motion planning for multiple millimeter-scale magnetic capsules in a fluid environment. In: IEEE International Conference on Robotics and Automation, pp. 1927–1932, May 2012
Vose, T.H., Umbanhowar, P., Lynch, K.M.: Friction-induced velocity fields for point parts sliding on a rigid oscillated plate. In: Robotics: Science and Systems, Zurich, Switzerland, June 2008
Vose, T.H., Umbanhowar, P., Lynch, K.M.: Sliding manipulation of rigid bodies on a controlled 6-DoF plate. Int. J. Robot. Res. 31(7), 819–838 (2012)
Wilfong, G.: Motion planning in the presence of movable obstacles. Ann. Math. Artif. Intell. 3(1), 131–150 (1991)
Acknowledgments
We acknowledge the helpful discussion and motivating experimental efforts with T. pyriformis cells by Yan Ou and Agung Julius at RPI and Paul Kim and MinJun Kim at Drexel University. This work was supported by the National Science Foundation under CPS-1035716.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Becker, A., Demaine, E.D., Fekete, S.P., Habibi, G., McLurkin, J. (2014). Reconfiguring Massive Particle Swarms with Limited, Global Control. In: Flocchini, P., Gao, J., Kranakis, E., Meyer auf der Heide, F. (eds) Algorithms for Sensor Systems. ALGOSENSORS 2013. Lecture Notes in Computer Science(), vol 8243. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45346-5_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-45346-5_5
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-45345-8
Online ISBN: 978-3-642-45346-5
eBook Packages: Computer ScienceComputer Science (R0)