Skip to main content

Maschinelles Lernen mit heuristisch generierten Modellen

  • Conference paper
Österreichische Artificial Intelligence-Tagung

Part of the book series: Informatik-Fachberichte ((2252,volume 106))

  • 32 Accesses

Abstract

In this paper an approach to the model-directed induction of inferential knowledge is discussed. In contrast to most existing programs that employ one single rule model, this approach is based on the heuristically-guided generation of several rule models. Furthermore, tentative ideas as how to achieve a fully operational system in the early stages of induction, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Carey, S.: “The Child as Word Learner”; in: M. Halle, J. Bresnan, G. Miller (eds.): Linguistic Theory and Psychological Reality, Cambridge, Mass. 1978

    Google Scholar 

  • Dietterich, T.G./ London, B./ Clarkson, K./ Dromey, G.: “Learning and Inductive Inference”; Kapitel XIV, 3.Band von Cohen/Feigenbaum (eds.): The Handbook of Artificial Intelligence, Kaufmann, Los Altos, 1982

    Google Scholar 

  • Dietterich, T.G./ Michalski, R.S.: “Discovering Patterns in Sequences of Events”, Artificial Intelligence 25, S. 187–232, 1985

    Article  Google Scholar 

  • Emde, W.: “Kontrainduktives Lernen von Konzepten aus Fakten”; In: B.Neumann (ed.): GWAI-83, 7th German Workshop on Artificial Intelligence; Springer, Berlin, 1983

    Google Scholar 

  • Emde, W.: “Inkrementelles Lernen mit heuristisch generierten Modellen”; KIT-Report 22, 1984

    Google Scholar 

  • Emde, W./ Hebel, Ch./ Rollinger, C.-R.: “The Discovery of the Equator (or Concept Driven Learning)”; In: Proc. IJCAI-83, Karlsruhe, 1983

    Google Scholar 

  • Hayes-Roth, F.: “Using Proofs and Refutations to Learn from Experience”; In: Michalski/Carbonell/Mitchell (eds.): Machine Learning; Tioga Press, Palo Alto, 1983

    Google Scholar 

  • Inhelder, B./ Piaget, J.: “The Law of Floating Bodies and the Elimination of Contradictions”; In: Inhelder/Piaget:The Growth of Logical Thinking; Routledge & Kegan Paul Ltd., London, 1968

    Google Scholar 

  • Lakatos, I.: “Beweise und Widerlegungen”; Vieweg, 1979

    Google Scholar 

  • Langley, P./ Zytkow, J./ Simon, H.A./ Bradshaw, G.L.: “Mechanism for Qualitative and Quantitative Discovery”; In: Proc. International Maschine Learning Workshop, Monticello, Illinois, 1983

    Google Scholar 

  • Mitchell, T.M.: “Generalisation as Search”; Artificial Intelligence 18, S. 203–226, 1982

    Article  MathSciNet  Google Scholar 

  • Simon, H.A.: “Why should Machines learn?”; In: Michalski/Carbonell/Mitchell (eds.): Machine Learning; Tioga Press, Palo Alto, 1983

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Emde, W. (1985). Maschinelles Lernen mit heuristisch generierten Modellen. In: Trost, H., Retti, J. (eds) Österreichische Artificial Intelligence-Tagung. Informatik-Fachberichte, vol 106. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46552-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46552-9_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-15695-6

  • Online ISBN: 978-3-642-46552-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics