Skip to main content

Cellular Automata as a Modelling Tool: Solidarity and Opinion Formation

  • Conference paper
Tools and Techniques for Social Science Simulation

Abstract

Basic features of a classical cellular automaton (CA) are:

  • Cells are arranged in a regular D-dimensional grid.

  • Every cell adopts a state from afinite set of states.

  • Time is discrete.

  • Cells change their states according to local rules.

  • The same transition rules apply to all cells.

  • In each period cells are updated (simultaneously /sequentially).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abelson, R. P. (1964): Mathematical Models of the Distribution of Attitudes Under Controversy. In: Frederiksen, N. & Gulliken, H. (eds.): Contributions to mathematical psychology. Holt, Rinehart & Winstonm, New York, 142–160.

    Google Scholar 

  • Abelson, R. P. (1979): Social Clusters and Opinion Clusters. In: Holland, P. W. & Leinhardt, S. (eds.): Perspectives on social network research. Academic Press, New York, 239–256.

    Google Scholar 

  • Bush, R. R. & Mosteller, F. (1955): Stochastic models for learning. Wiley, New York.

    Google Scholar 

  • Dawes, R. M., & Thaler, R. H. (1988): Anomalies: Cooperation. Journal of Economic Perspectives 2, 187–197.

    Google Scholar 

  • Doob, J. L. (1953): Stochastic Processes. Wiley, New York.

    Google Scholar 

  • Flache, A. (1996): The Double Edge of Networks: An analysis of the effect of informal networks on cooperation in social dilemmas. Thesis Publishers, Amsterdam.

    Google Scholar 

  • Flache, A. & Macy, M. W. (1996): The Weakness of Strong Ties: Collective action failure in a highly cohesive group. Journal of Mathematical Sociology 21, 3–28.

    Article  Google Scholar 

  • Flache, A. & Hegselmann, R. (1998): Rational vs. Adaptive Egoism in Support Networks: How different micro foundations shape different macro hypotheses. In: Leinfellner, W. & Köhler, E. (eds.): Game Theory, Experience, Rationality. Foundations of Social Sciences, Economics and Ethics. In Honor of John C. Harsanyi [Yearbook of the Institute Vienna Circle 5]. Klüver, Dordrecht, 261–275.

    Google Scholar 

  • Flache, A. & Hegselmann, R. (forthcoming): Rationality vs. Learning in the Evolution of Solidarity Networks: A Theoretical Comparison. In: Bonacich, P. & Carley, K. (eds.): Computational and Mathematical Organization Theory. Special Issue on Games and Networks.

    Google Scholar 

  • French, J. R. P. jr. (1956): The Formal Theory of Social Power. Psychological Review 63, 181–194.

    Article  Google Scholar 

  • Friedman, M. (1953): Essays in positive economics. University of Chicago Press, Chicago.

    Google Scholar 

  • Friedman, J. W. (1986): Game Theory with Applications to Economics, 2nd ed. 1991. Oxford UP, Cambridge.

    Google Scholar 

  • Harary, F. (1959): A Criterion for Unanimity in French’s Theory of Social Power. In: Cartwright, D. (ed.): Studies in Social Power. University of Michigan: Institute for Social Research, 168–182.

    Google Scholar 

  • Hechter, M. (1992): The Insufficiency of Game Theory for the Solution of Real-World Collective Action Problems. Rationality and Society 4, 33–40.

    Article  Google Scholar 

  • Hegselmann, R. (1996): Cellular Automata in the Social Sciences — perspectives, restrictions, and artefacts. In: Hegselmann, R, Troitzsch, K. G. & Müller, U. (eds.): Modeling and Simulation in the Social Sciences from the Philosophy of Science Point of View (Theory and Decision Library). Klüver, Dordrecht, 209–234.

    Google Scholar 

  • Hegselmann, R. (1998): Modeling Social Dynamics by Cellular Automata. In: Liebrand, W. B. G., Nowak, A. & Hegselmann, R. (eds.): Computer Modeling and the Study of Dynamical Social Processes. London, Sage, 37–64.

    Google Scholar 

  • Hegselmann, R. & Flache, A. (1998): Understanding Complex Social Dynamics: A Plea For Cellular Automata Based Modelling. In: Journal of Artificial Societies and Social Simulation 1: http://www.soc.surrey.ac.Uk/JASSS/1/3/1.html

  • Latané, B., Nowak, A. (1997): Self-Organizing Social Systems: Necessary and sufficient conditions for the emergence of clustering, consolidation and continuing diversity. In: Barnet, G. & Boster, F. (eds.): Progress in communication science: Persuasion, Ablex, Norwood, NJ, 43–74.

    Google Scholar 

  • Lehrer, K., & Wagner, C. (1981): Rational Consensus in Science and Society. Reidel, Dordrecht.

    Google Scholar 

  • Macy, M. W. (1991): Learning to Cooperate: Stochastic and tacit collusion in social exchange.American Journal of Sociology 97, 808–843.

    Article  Google Scholar 

  • Macy, M. W. & Flache, A. (1995): Beyond Rationality in Models of Choice. Annual Review of Sociology 21, 73–91.

    Article  Google Scholar 

  • Möller V. (1997): The irregular cellular automata, page: http://www.uni-bayreuth.de/depaitments/philosopWe/INHALT.HTM

  • Okabe A., Boots, B. & Sugihara, K. (1992): Spatial Tessellations — Concepts and applications of voronoi diagrams. Wiley & Sons, Chichester.

    Google Scholar 

  • Roth, A. (1992): Game Theory as Part of Empirical Economics. In: Hey, J. D. (ed.): The Future of Economics. Blackwell, Cambridge, 107–114.

    Google Scholar 

  • Taylor, M. (1987): The Possibility of Cooperation (revised edition of: Anarchy and cooperation, 1976). Wiley & Sons, London.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Physica-Verlag Heidelberg

About this paper

Cite this paper

Hegselmann, R., Flache, A., Möller, V. (2000). Cellular Automata as a Modelling Tool: Solidarity and Opinion Formation. In: Suleiman, R., Troitzsch, K.G., Gilbert, N. (eds) Tools and Techniques for Social Science Simulation. Physica, Heidelberg. https://doi.org/10.1007/978-3-642-51744-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-51744-0_9

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-7908-1265-7

  • Online ISBN: 978-3-642-51744-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics