Abstract
This paper presents a fast algorithm for discretization of decision tables. An important novelty of the proposed solution is the application of the original algorithm of Boolean function complementation, which is a basic procedure of the field of logic synthesis, in the process of discretizing the data. This procedure has already been used by the author to calculate reducts of decision tables, where the time of calculation has been significantly reduced. It yields the idea of using the algorithm of complementation in the process of discretization. The algorithm has been generalized for the discretization of inconsistent decision tables and is used in the processing of numerical data from various fields of technology, especially for multimedia data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Borowik, G.: Data mining approach for decision and classification systems using logic synthesis algorithms. In: Klempous, R., Nikodem, J., Jacak, W., Chaczko, Z. (eds.) Advanced Methods and Applications in Computational Intelligence. Topics in Intelligent Engineering and Informatics, vol. 6, pp. 3–23. Springer International Publishing (2014), doi:10.1007/978-3-319-01436-4_1
Borowik, G., Łuba, T.: Fast algorithm of attribute reduction based on the complementation of boolean function. In: Klempous, R., Nikodem, J., Jacak, W., Chaczko, Z. (eds.) Advanced Methods and Applications in Computational Intelligence. Topics in Intelligent Engineering and Informatics, vol. 6, pp. 25–41. Springer International Publishing (2014), doi:10.1007/978-3-319-01436-4_2
Borowik, G., Łuba, T., Zydek, D.: Features reduction using logic minimization techniques. International Journal of Electronics and Telecommunications 58(1), 71–76 (2012)
Brayton, R.K., Hachtel, G.D., McMullen, C.T., Sangiovanni-Vincentelli, A.: Logic Minimization Algorithms for VLSI Synthesis. Kluwer Academic Publishers (1984)
Cuingnet, R., Gerardin, E., Tessieras, J., Auzias, G., Lehericy, S., Habert, M.O., Chupin, M., Benali, H., Colliot, O.: Automatic classification of patients with Alzheimer’s disease from structural MRI: A comparison of ten methods using the ADNI database. NeuroImage 56(2), 766–781 (2011), doi:10.1016/j.neuroimage.2010.06.013
Dasgupta, S., Papadimitriou, C.H., Vazirani, U.V.: Algorithms. McGraw-Hill (2008)
Komorowski, J., Pawlak, Z., Polkowski, L., Skowron, A.: Rough sets: A tutorial (1999)
Łuba, T., Rybnik, J.: Rough sets and some aspects in logic synthesis. In: Słowiński, R. (ed.) Intelligent Decision Support – Handbook of Application and Advances of the Rough Sets Theory. Kluwer Academic Publishers (1992)
Mangasarian, O.L., Wolberg, W.H.: Cancer diagnosis via linear programming. SIAM News 23(5), 1–18 (1990)
Papadimitriou, C.H.: Computational complexity. Academic Internet Publ. (2007)
Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers (1991)
Skowron, A., Rauszer, C.: The discernibility matrices and functions in information systems. In: Słowiński, R. (ed.) Intelligent Decision Support – Handbook of Application and Advances of the Rough Sets Theory. Kluwer Academic Publishers (1992)
Smith, J.W., Everhart, J.E., Dickson, W.C., Knowler, W.C., Johannes, R.S.: Using the ADAP learning algorithm to forecast the onset of diabetes mellitus. In: Proceedings of the Symposium on Computer Applications and Medical Care, pp. 261–265. IEEE Computer Society Press (1988)
Žádník, M., Michlovský, Z.: Is Spam Visible in Flow-Level Statistics? Tech. rep., CESNET National Research and Education Network (2009), http://www.fit.vutbr.cz/research/view_pub.php?id=9277
UC Irvine Machine Learning Repository, http://archive.ics.uci.edu/ml/
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Borowik, G. (2013). Boolean Function Complementation Based Algorithm for Data Discretization. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory - EUROCAST 2013. EUROCAST 2013. Lecture Notes in Computer Science, vol 8112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53862-9_28
Download citation
DOI: https://doi.org/10.1007/978-3-642-53862-9_28
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-53861-2
Online ISBN: 978-3-642-53862-9
eBook Packages: Computer ScienceComputer Science (R0)