Skip to main content

Boolean Function Complementation Based Algorithm for Data Discretization

  • Conference paper
Computer Aided Systems Theory - EUROCAST 2013 (EUROCAST 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8112))

Included in the following conference series:

  • 1980 Accesses

Abstract

This paper presents a fast algorithm for discretization of decision tables. An important novelty of the proposed solution is the application of the original algorithm of Boolean function complementation, which is a basic procedure of the field of logic synthesis, in the process of discretizing the data. This procedure has already been used by the author to calculate reducts of decision tables, where the time of calculation has been significantly reduced. It yields the idea of using the algorithm of complementation in the process of discretization. The algorithm has been generalized for the discretization of inconsistent decision tables and is used in the processing of numerical data from various fields of technology, especially for multimedia data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Borowik, G.: Data mining approach for decision and classification systems using logic synthesis algorithms. In: Klempous, R., Nikodem, J., Jacak, W., Chaczko, Z. (eds.) Advanced Methods and Applications in Computational Intelligence. Topics in Intelligent Engineering and Informatics, vol. 6, pp. 3–23. Springer International Publishing (2014), doi:10.1007/978-3-319-01436-4_1

    Google Scholar 

  2. Borowik, G., Łuba, T.: Fast algorithm of attribute reduction based on the complementation of boolean function. In: Klempous, R., Nikodem, J., Jacak, W., Chaczko, Z. (eds.) Advanced Methods and Applications in Computational Intelligence. Topics in Intelligent Engineering and Informatics, vol. 6, pp. 25–41. Springer International Publishing (2014), doi:10.1007/978-3-319-01436-4_2

    Google Scholar 

  3. Borowik, G., Łuba, T., Zydek, D.: Features reduction using logic minimization techniques. International Journal of Electronics and Telecommunications 58(1), 71–76 (2012)

    Article  Google Scholar 

  4. Brayton, R.K., Hachtel, G.D., McMullen, C.T., Sangiovanni-Vincentelli, A.: Logic Minimization Algorithms for VLSI Synthesis. Kluwer Academic Publishers (1984)

    Google Scholar 

  5. Cuingnet, R., Gerardin, E., Tessieras, J., Auzias, G., Lehericy, S., Habert, M.O., Chupin, M., Benali, H., Colliot, O.: Automatic classification of patients with Alzheimer’s disease from structural MRI: A comparison of ten methods using the ADNI database. NeuroImage 56(2), 766–781 (2011), doi:10.1016/j.neuroimage.2010.06.013

    Article  Google Scholar 

  6. Dasgupta, S., Papadimitriou, C.H., Vazirani, U.V.: Algorithms. McGraw-Hill (2008)

    Google Scholar 

  7. Komorowski, J., Pawlak, Z., Polkowski, L., Skowron, A.: Rough sets: A tutorial (1999)

    Google Scholar 

  8. Łuba, T., Rybnik, J.: Rough sets and some aspects in logic synthesis. In: Słowiński, R. (ed.) Intelligent Decision Support – Handbook of Application and Advances of the Rough Sets Theory. Kluwer Academic Publishers (1992)

    Google Scholar 

  9. Mangasarian, O.L., Wolberg, W.H.: Cancer diagnosis via linear programming. SIAM News 23(5), 1–18 (1990)

    Google Scholar 

  10. Papadimitriou, C.H.: Computational complexity. Academic Internet Publ. (2007)

    Google Scholar 

  11. Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers (1991)

    Google Scholar 

  12. Skowron, A., Rauszer, C.: The discernibility matrices and functions in information systems. In: Słowiński, R. (ed.) Intelligent Decision Support – Handbook of Application and Advances of the Rough Sets Theory. Kluwer Academic Publishers (1992)

    Google Scholar 

  13. Smith, J.W., Everhart, J.E., Dickson, W.C., Knowler, W.C., Johannes, R.S.: Using the ADAP learning algorithm to forecast the onset of diabetes mellitus. In: Proceedings of the Symposium on Computer Applications and Medical Care, pp. 261–265. IEEE Computer Society Press (1988)

    Google Scholar 

  14. Žádník, M., Michlovský, Z.: Is Spam Visible in Flow-Level Statistics? Tech. rep., CESNET National Research and Education Network (2009), http://www.fit.vutbr.cz/research/view_pub.php?id=9277

  15. UC Irvine Machine Learning Repository, http://archive.ics.uci.edu/ml/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Borowik, G. (2013). Boolean Function Complementation Based Algorithm for Data Discretization. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory - EUROCAST 2013. EUROCAST 2013. Lecture Notes in Computer Science, vol 8112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53862-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-53862-9_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53861-2

  • Online ISBN: 978-3-642-53862-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics