Skip to main content

Dempster-Shafer Theory Based Ship-Ship Collision Probability Modelling

  • Conference paper
Computer Aided Systems Theory - EUROCAST 2013 (EUROCAST 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8112))

Included in the following conference series:

  • 2032 Accesses

Abstract

The methodology proposed in this paper considers the uncertainty present in modeling the probability of collision between ships on a route. The proposal allows representing and quantifying uncertainty, and ensures rigorous propagation of this uncertainty from the input variables to the output variable.

This proposal complements the analysis of risk and helps the decision maker to know the degree of confidence associated with the results of the analysis.

Pedersen’s model has been selected to estimate the probability of collision, using the information provided by the AIS, and Dempster-Shafer Theory has been selected for the treatment of uncertainty.

This methodology has been applied to maritime traffic in the Canary Islands and has been validated using the Kullback-Leibler divergence. The results are consistent with those obtained with the software IWRAP recommended by IALA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dempster, A.P.: Upper and lower probabilities induced by a multi-valued mapping. Annals of Mathematical Statistics 38, 325–339 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  2. Yager, R.R.: Arithmetic and other operations on Dempster-Shafer structures. International Journal of Man-Machine Studies 25, 357–366 (1986)

    Article  MathSciNet  Google Scholar 

  3. Fuji, Y., Yamanouchi, H., Mizuki, N.: Some factors affecting the frequency of accidents in marine traffic. II: The probability of stranding. III: The effect of darkness on the probability of stranding. Journal of Navigation 27 (1974)

    Google Scholar 

  4. Mac Duff, T.: The probability of vessel collisions. Ocean Industry, 144–148 (1974)

    Google Scholar 

  5. Pedersen, P.T.: Collision and grounding mechanics. In: Proceedings of WEMT 1995. The Danish Society of Naval Architects and Marine Engineers, pp. 461–474 (1995)

    Google Scholar 

  6. Friis-Hansen, P., Engberg, P.C.: Basic modeling principles for prediction of collision and grounding frequencies. Technical University of Denmark (2008)

    Google Scholar 

  7. Montewka, J., Hinz, T., Kujala, P., Matusiak, J.: Probability Modelling of vessel collisions. Reliability Engineering and System Safety 95, 573–589 (2010)

    Article  Google Scholar 

  8. Montewka, J., Goerlandt, F., Kujala, P.: Determination of collision criteria and causation factors appropriate to a model for estimating the probability of maritime accidents. Ocean Engineering 40, 50–61

    Google Scholar 

  9. Goerlandt, F., Kujala, P.: Traffic simulation based ship collision probability modeling. Reliability Engineering and System Safety 96(1), 91–107 (2011)

    Article  Google Scholar 

  10. Fowler, T.G., Sorgard, E.: Modeling ship transportation risk. Risk Analysis 20(2), 225–244 (2000)

    Article  Google Scholar 

  11. Sofartsstyrelsen. Risk analysis of sea traffic in the area around Bornholm. Technical report, COWI, Kongens Lyngby (2008)

    Google Scholar 

  12. Merrick, J., Van Dorp, J., Blackford, J., Shaw, G., Harrald, J., Mazzuchi, T.: A traffic density analysis of proposed ferry service expansion in San Francisco bay using a maritime simulation model. Reliability Engineering and System Safety 81, 119–132 (2003)

    Article  Google Scholar 

  13. Merrick, J., Van Dorp, J.: Modeling risk in the dynamic environment of maritime transportation. In: Proceedings of the Winter Simulation Conference, pp. 1090–1098 (2001)

    Google Scholar 

  14. Gucma, L.: Models of ship’s traffic flow for the safety of marine engineering structures evaluation. In: Proceedings of the ESREL, pp. 713–718 (2003)

    Google Scholar 

  15. Przywarty, M.: Probabilistic model of ships navigational safety assessment on large sea areas. In: Proceedings of the 16th International Symposium on Electronics in Transport (2008)

    Google Scholar 

  16. Shafer, G.: A mathematical theory of evidence. Princeton University Press (1976)

    Google Scholar 

  17. Sentz, K., Ferson, S.: Combination of evidence in Dempster-Shafer theory. Technical report. Sandia National Laboratories (2002)

    Google Scholar 

  18. Moore, R.E.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)

    MATH  Google Scholar 

  19. Neumann, T.: A simulation environment for modeling and analysis of the distribution of shore observatory stations. International Journal on Marine Navigation and Safety of Sea Transportation 5(4) (2011)

    Google Scholar 

  20. Filipowicz, W.: An application of mathematical theory of evidence in navigation. International Journal on Marine Navigation and Safety of Sea Transportation 3(4) (2009)

    Google Scholar 

  21. Filipowicz, W.: Belief structures in position fixing. Communications in Computer and Information Science 104, 434–446 (2010)

    Article  Google Scholar 

  22. Sii, H.S., Ruxton, T., Wang, J.: Synthesis using fuzzy set theory and a Dempster-Shafer based approach to compromise decision-making with multiple-attributes applied to risk control options selection. Proceedings Institution of Mechanical Engineers 216, 15–29 (2002)

    Article  Google Scholar 

  23. Helton, J.C.: Uncertainty and sensitivity analysis in the presence of stochastic and subjective uncertainty. Journal of Statistical Computation and Simulation 57, 3–76 (1997)

    Article  MATH  Google Scholar 

  24. Ferson, S., Kreinovich, V., Ginzburg, L., Myers, D., Sentz, K.: Constructing probability boxes and Dempster-Shafer structures. Technical report. Sandia National Laboratories (2003)

    Google Scholar 

  25. Miller, L.H.: Table of percentage points of Kolmogorov statistics. Journal of the American Statistical Association 51, 111–121 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ferson, S., Hajagos, J.: Arithmetic with uncertain numbers: rigorous and (often) best possible answers. Reliability Engineering and System Safety 85, 135–152 (2004)

    Article  Google Scholar 

  27. Ferson, S., Tucker, W.T.: Sensitivity in Risk analyses with uncertain numbers. Technical report. Sandia National Laboratories (2006)

    Google Scholar 

  28. Zona marítima especialmente sensible. Secretaría General de Transporte. Dirección General de la Marina Mercante. Capitanía Marítima en Las Palmas. Ministerio de Fomento. Gobierno de España (2007)

    Google Scholar 

  29. Lilliefors, H.: On the Kolmogorov-Smirnov test for normality with mean and variance unknown. Journal of the American Statistical Association 62, 399–402 (1967)

    Article  Google Scholar 

  30. IALA Recommendation O-134 on the IALA Risk Management tool for ports and restricted waterways (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Talavera Ortiz, A., Aguasca Colomo, R., Galván González, B.J. (2013). Dempster-Shafer Theory Based Ship-Ship Collision Probability Modelling. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory - EUROCAST 2013. EUROCAST 2013. Lecture Notes in Computer Science, vol 8112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53862-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-53862-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53861-2

  • Online ISBN: 978-3-642-53862-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics