Skip to main content

A New Fuzzy Extreme Learning Machine for Regression Problems with Outliers or Noises

  • Conference paper
Advanced Data Mining and Applications (ADMA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8347))

Included in the following conference series:

  • 3300 Accesses

Abstract

Extreme Learning Machine (ELM), recently proposed by Huang et al., has attracted much attention from more and more researchers in the machine learning and data mining community, and has shown similar or better generalization performance with dramatically reduced training time than Support Vector Machines (SVM). In ELM, it is implicitly assumed that all samples in training datasets share the same importance. Therefore, when it comes to datasets with outliers or noises, like SVM, ELM may produce suboptimal regression models due to overfitting. In this paper, by equipping ELM with the fuzzy concept, we propose a novelty approach called New Fuzzy ELM (NF-ELM) to deal with the above problem. In NF-ELM, firstly, different training samples are assigned with different fuzzy-membership values based on their degree of being outliers or noises. Secondly, these membership values are incorporated into the ELM algorithm to make it less sensitive to outliers or noises. The performance of the proposed NF-ELM algorithm is evaluated on three artificial datasets and thirteen real-world benchmark function approximation problems. The results indicate that the proposed NF-ELM algorithm achieves better predictive accuracy in most cases than ELM and SVM does.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: theory and applications. Neurocomputing 70, 489–501 (2006)

    Article  Google Scholar 

  2. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: a new learning scheme of feedforward neural networks. In: Proceedings of International Joint Conference on Neural Networks, pp. 25–29 (2004)

    Google Scholar 

  3. Huang, G.-B., Chen, L.: Convex incremental extreme learning machine. Neurocomputing 70, 3056–3062 (2007)

    Article  Google Scholar 

  4. Huang, G.-B., Chen, L.: Enhanced random search based incremental extreme learning machine. Neurocomputing 70, 3460–3468 (2008)

    Article  Google Scholar 

  5. Huang, G.-B., Wang, D.-H., Lan, Y.: Extreme learning machine: a survey. Int. J. Mach. Learn. & Cyber. (2), 107–122 (2011)

    Google Scholar 

  6. Rong, H.-J., Ong, Y.-S., Tan, A.-H., Zhu, Z.: A fast pruned extreme learning machine for classification. Neurocomputing 72, 359–366 (2008)

    Article  Google Scholar 

  7. Huang, G.-B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and multi-class classification. IEEE Transactions on Systems, Man, and Cybernetics-part B: Cybernetics (2011)

    Google Scholar 

  8. Lan, Y., Soh, Y.-C., Huang, G.-B.: Two-stage extreme learning machine for regression. Neurocomputing 73, 223–233 (2010)

    Google Scholar 

  9. Feng, G., Huang, G.-B., Lin, Q., Gay, R.: Error minimized extreme learning machine with growth of hidden nodes and incremental learning. IEEE Trans. Neural. Netw. 20, 1352–1357 (2009)

    Article  Google Scholar 

  10. Huang, G.-B., Chen, L., Siew, C.-K.: Incremental extreme learning machine with fully complex hidden nodes. Neurocomputing 71, 576–583 (2008)

    Article  Google Scholar 

  11. Deng, W.-Y., Zheng, Q.-L., Chen, L.: Regularized extreme learning machine. IEEE Symposium on Computational Intelligence and Data Mining (2), 389–395 (2009)

    Google Scholar 

  12. Miche, Y., Sorjamaa, A., Lendasse, A.: OP-ELM: theory, experiments and a toolbox. In: Kůrková, V., Neruda, R., Koutník, J. (eds.) ICANN 2008, Part I. LNCS, vol. 5163, pp. 145–154. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Miche, Y., Sorjamaa, A., Bas, P., Simula, O., Jutten, C., Lendasse, A.: OP-ELM: optimally pruned extreme learning machine. IEEE Trans. Syst. Man Cybern. Part B Cybern. 21, 158–162 (2010)

    Google Scholar 

  14. Zhu, Q.-Y., Qin, A.-K., Suganthan, P.-N., Huang, G.-B.: Evolutionary extreme learning machine. Pattern Recognition 38, 1759–1763 (2005)

    Article  MATH  Google Scholar 

  15. Liu, N., Han, W.: Ensemble based extreme learning machine. IEEE Singal Processing Letters 17, 754–757 (2010)

    Article  Google Scholar 

  16. Qu, Y.-P., Shang, C.-J., Wu, W., Shen, Q.: Evolutionary fuzzy extreme learning machine for mammographic risk analysis. International Journal of Fuzzy Syetems 13, 282–291 (2011)

    MathSciNet  Google Scholar 

  17. Rong, H.-J., Huang, G.-B., Sundararajan, N., Saratchandran, P.: Online sequential fuzzy extreme learning machine for function approximation and classification problems. IEEE Transactions on System, Man and Cybernetics-Part B: Cybernetics 39, 1067–1072 (2009)

    Article  Google Scholar 

  18. Lin, C.-F., Wang, S.-D.: Fuzzy support vector machines. IEEE Transactions on Neural Networks 5, 2603–2613 (2002)

    Google Scholar 

  19. Huang, H.-P., Liu, Y.-H.: Fuzzy support vector machines for pattern recognition and data mining. Int. J. Fuzzy Sys. 4, 826–835 (2002)

    Google Scholar 

  20. Jiang, X.-F., Yi, Z., Lv, J.-C.: Fuzzy SVM with a new fuzzy membership function. Neural Comput. Appl. 15, 268–276 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zheng, E., Liu, J., Lu, H., Wang, L., Chen, L. (2013). A New Fuzzy Extreme Learning Machine for Regression Problems with Outliers or Noises. In: Motoda, H., Wu, Z., Cao, L., Zaiane, O., Yao, M., Wang, W. (eds) Advanced Data Mining and Applications. ADMA 2013. Lecture Notes in Computer Science(), vol 8347. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53917-6_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-53917-6_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53916-9

  • Online ISBN: 978-3-642-53917-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics