Skip to main content

Adaptive Consensus of Multi-agents in Jointly Connected Networks

  • Conference paper
Information Computing and Applications (ICICA 2013)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 391))

Included in the following conference series:

Abstract

This paper investigates the adaptive consensus problem for multi-agent systems with unknown nonlinear dynamics. The topologies of the networks are jointly connected. An adaptive consensus algorithm is proposed by using linear parameterizations of unknown nonlinear dynamics of all agents. By stability analysis and parameter convergence analysis of the proposed algorithm, adaptive consensus can be realized based on neighboring graphs. The stability analysis is based on algebraic graph theory and Lyapunov theory, the PE condition plays a key role in parameter convergence analysis. The simulation results are provided to demonstrate the effectiveness of our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Fax, A., Murray, R.M.: Information flow and cooperative control of vehicle formations. IEEE Transaction on Automatic Control 49(9), 1465–1476 (2004)

    Article  MathSciNet  Google Scholar 

  2. Ren, W.: Consensus strategies for cooperative control of vehicle formations. IET Control Theory & Applications 1(2), 505–512 (2007)

    Article  Google Scholar 

  3. Tanner, H.G., Jadbabaie, A., Pappas, G.J.: Stable flocking of mobile agents, part I: Fixed topology. In: Proceedings of the 42nd IEEE Conference on Decision and Control, Maui, Hawaii, USA, vol. 2, pp. 2010–2015 (2003)

    Google Scholar 

  4. Ren, W., Beard, R.W.: Consensus seeking in multi-agent systems under dynamically changing interaction topologies. IEEE Transaction on Automatic Control 50(5), 655–661 (2005)

    Article  Google Scholar 

  5. Salehi, A.T., Jadbabaie, A.: A necessary and sufficient condition for consensus over random networks. IEEE Transaction on Automatic Control 53(3), 791–795 (2008)

    Article  MathSciNet  Google Scholar 

  6. Lin, P., Jia, Y.: Multi-agent consensus with diverse time-delays and jointly-connected topologies. Automatica 47, 848–856 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kashyap, A., Basar, T., Srikant, R.: Quantized consensus. Automatica 43, 1192–1203 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Xiao, F., Wang, L.: Consensus problems for high-dimensional multi-agent systems. IET Control Theory & Applications 1(3), 830–837 (2007)

    Article  Google Scholar 

  9. Bai, H., Arcak, M., Wen, J.T.: Adaptive design for reference velocity recovery in motion coordination. Systems & Control Letters 57, 602–610 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bai, H., Arcak, M., Wen, J.T.: Adaptive motion coordination: Using relative velocity feedback to track a reference velocity. Automatica 45, 1020–1025 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Das, A., Lewis, F.L.: Distributed adaptive control for synchronization of unknown nonlinear networked systems. Automatica 46, 2014–2021 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hou, Z., Cheng, L., Tan, M.: Decentralized robust adaptive control for the multi-agent system consensus problem using neural networks. IEEE Transaction on Systems, Man, and Cybernetics Part B: Cybernetics 39(3), 636–647 (2009)

    Article  Google Scholar 

  13. Godsil, C.D., Royle, G.: Algebraic Graph Theory. Springer, New York (2001)

    Book  MATH  Google Scholar 

  14. Marino, R., Tomei, P.: Nonlinear Control Design: Geometric Adaptive, and Robust. Prentice-Hall, Europe (1995)

    MATH  Google Scholar 

  15. Sastry, S., Bodson, M.: Adaptive Control: Stability, Convergence and Robustness. Prentice-Hall, New Jersey (1989)

    MATH  Google Scholar 

  16. Ni, W., Cheng, D.: Leader-following consensus of multi-agent systems under fixed and switching topologies. Systems & Control Letters 59, 209–217 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, G., Yu, H., Zhang, Y. (2013). Adaptive Consensus of Multi-agents in Jointly Connected Networks. In: Yang, Y., Ma, M., Liu, B. (eds) Information Computing and Applications. ICICA 2013. Communications in Computer and Information Science, vol 391. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53932-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-53932-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53931-2

  • Online ISBN: 978-3-642-53932-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics