Skip to main content

Multiple Subviral Particle in Fluorecsence Microscopy Sequences

  • Chapter
  • First Online:
Bildverarbeitung für die Medizin 2014

Part of the book series: Informatik aktuell ((INFORMAT))

  • 2306 Accesses

Abstract

To analyze the intracellular movements of subviral particles (nucleocapsids, NCs) of the Marburg virus, the viral protein VP30 has been labeled fluorescently. This makes the NCs observable by fluorescence microscopy under biosafety level 4 conditions. An algorithm has been developed, aiming to allow the automated detection and tracking of the NCs . The specific feature of this approach is the inclusion of expertise about the NCs’ appearance and movement characteristics, what gives more reliable results than a simple nearest neighbor linking of the detected NCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Schudt G, Kolesnikova L, Dolnik O, et al. Live-cell imaging of Marburg virusinfected cells uncovers actin-dependent transport of nucleocapsids over long distances. Proc Natl Acad Sci. 2013;110(35):14402–7.

    Article  Google Scholar 

  2. Smal I, Draegestein K, Galjart N, et al. Particle filtering for multiple object tracking in dynamic fluorescence microscopy images: application to microtubule growth analysis. IEEE Trans Med Imaging. 2008;27(6):789–804.

    Article  Google Scholar 

  3. Meijering E, Dzyubachyk O, Smal I. Methods for cell and particle tracking. Methods Enzymol. 2012;504:183–200.

    Article  Google Scholar 

  4. Cheezum MK, Walker WF, Guilford WH. Quantitative comparison of algorithms for tracking single fluorescent particles. Biophys J. 2001;81(4):2378–88.

    Article  Google Scholar 

  5. Meijering E. Cell segmentation: 50 years down the road [life sciences]. IEEE Signal Process Mag. 2012;29(5):140–5.

    Article  Google Scholar 

  6. Arulampalam MS, Maskell S, Gordon N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans Signal Process. 2002;50(2):174–88.

    Article  Google Scholar 

  7. Godinez WJ, Lampe M, W¨orz S, et al. Deterministic and probabilistic approaches for tracking virus particles in time-lapse fluorescence microscopy image sequences. Med Image Anal. 2009;13(2):325–42.

    Article  Google Scholar 

  8. Kienzle C, Schudt G, Becker S, et al. Subviral particle tracking. Biomed Eng/ Biomed Tech. 2013;58(s1-keynote):1–4.

    Google Scholar 

  9. Fawcett T. An introduction to ROC analysis. Pattern Recognit Lett. 2006;27(8):861–74.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Kienzle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kienzle, C., Schudt, G., Becker, S., Schanze, T. (2014). Multiple Subviral Particle in Fluorecsence Microscopy Sequences. In: Deserno, T., Handels, H., Meinzer, HP., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2014. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54111-7_61

Download citation

Publish with us

Policies and ethics