Abstract
The molecular distance geometry problem (MDGP) is a fundamental problem in determining molecular structures from the NMR data. We present a heuristic algorithm, the BetaMDGP, which outperforms existing algorithms for solving the MDGP. The BetaMDGP algorithm is based on the beta-complex, which is a geometric construct extracted from the quasi-triangulation derived from the Voronoi diagram of atoms. Starting with an initial tetrahedron defined by the centers of four closely located atoms, the BetaMDGP determines a molecular structure by adding one shell of atoms around the currently determined substructure using the beta-complex. The proposed algorithm has been entirely implemented and tested with atomic arrangements stored in an NMR format created from PDB files. Experimental results are also provided to show the powerful capability of the proposed algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Donald, B.R.: Algorithms in Structural Molecular Biology. The MIT Press (2011)
Cavanagh, J., Fairbrother, W.J., Palmer III, A.G., Rance, M., Skelton, N.J.: Protein NMR spectroscopy: principles and practice. Academic Press (2006)
Jan, D.: Principals of protein X-ray crystallography. Springer (2006)
Blumenthal, L.M.: Theory and Applications of Distance Geometry. Oxford Clarendon Press (1953)
Crippen, G., Havel, T.: Distance Geometry and Molecular Conformation. John Wiley & Sons, New York (1988)
Liberti, L., Lavor, C., Maculan, N., Mucherino, A.: Euclidean distance geometry and applications. SIAM Review 56 (article in press, 2014)
Havel, T.F.: Distance Geometry, vol. 4. John Wiley & Sons (1995)
Saxe, J.: Embeddability of weighted graphs in k-space is strongly np-hard. In: Proceedings of 17th Allerton Conference in Communications Control and Computing, pp. 480–489 (1979)
Moré, J.J., Wu, Z.: Global continuation for distance geometry problems. SIAM Journal of Optimization 7, 814–836 (1997)
Moré, J.J., Wu, Z.: Distance geometry optimization for protein strucutures. Journal of Global Optimization 15(3), 219–234 (1999)
An, L.T.H.: Solving large scale molecular distance geometry problems by a smoothing technique via the gaussian transform and d.c. programming. Journal of Global Optimization 27, 375–397 (2003)
An, L.T.H., Tao, P.D.: Large-scale molecular optimization from distance matrices by a d.c. optimization approach. SIAM Journal of Optimization 14(1), 77–114 (2003)
Liberti, L., Lavor, C., Mucherino, A., Maculan, N.: Molecular distance geometry methods: from continuous to discrete. International Transactions in Operational Research 18, 33–51 (2010)
Wüthrich, K.: NMR in Structural Biology. World Scientific, New York (1995)
Havel, T.: An evaluation of computational strategies for use in the determination of protein structure from distance constraints obtained by nuclear magnetic resonance. Progress in Biophysics and Molecular Biology 56(1), 43–78 (1991)
Hendrickson, B.: The Molecular Problem: Determining Conformation from Pairwise Distances. PhD thesis, Cornell University (1991)
Hendrickson, B.: The molecule problem: Exploiting structure in global optimization. SIAM Journal of Optimization 5, 835–857 (1995)
Dong, Q., Wu, Z.: A geometric build-up algorithm for solving the molecular distance geometry problem with sparse distance data. Journal of Global Optimization 26(3), 321–333 (2003)
Wu, D., Wu, Z.: An updated geometric build-up algorithm for solving the molecular distance geometry problems with sparse distance data. Journal of Global Optimization 37(4), 661–673 (2007)
Sit, A., Wu, Z., Yuan, Y.: A geometric buildup algorithm for the solution of the distance geometry problem using least-squares approximation. Bulletin of Mathematical Biology 71(8), 1914–1933 (2009)
Sit, A., Wu, Z.: Solving a generalized distance geometry problem for protein structure determination. Bulletin of Mathematical Biology, 1–28 (2011)
Brünger, A.T., Adams, P.D., Clore, G.M., DeLano, W.L., Gros, P., Grosse-Kunstleve, R., Jiang, J.S., Kuszewski, J., Nilges, M., Pannu, N.S., Read, R.J., Rice, L.M., Simonson, T., Warren, G.L.: Crystallography & nmr system: A new software suite for macromolecular structure determination. Acta Crystallographica Section D-Biological Crystallography D54, 905–921 (1998)
Schwieters, C.D., Kuszewski, J.J., Tjandra, N., Clore, G.M.: The xplor-nih nmr molecular structure determination package. Journal of Magnetic Resonance 160, 65–73 (2003)
Lavor, C., Liberti, L., Maculan, N., Mucherino, A.: The discretizable molecular distance geometry problem. Computational Optimization and Applications 52, 115–146 (2012)
Liberti, L., Lavor, C., Maculan, N.: A branch-and-prune algorithm for the molecular distance geometry problem. International Transactions in Operational Research 15, 1–17 (2008)
Kim, D.S., Cho, Y., Sugihara, K., Ryu, J., Kim, D.: Three-dimensional beta-shapes and beta-complexes via quasi-triangulation. Computer-Aided Design 42(10), 911–929 (2010)
Kim, D.S., Kim, J.K., Cho, Y., Kim, C.M.: Querying simplexes in quasi-triangulation. Computer-Aided Design 44(2), 85–98 (2012)
Kim, D.S., Seo, J., Kim, D., Ryu, J., Cho, C.H.: Three-dimensional beta shapes. Computer-Aided Design 38(11), 1179–1191 (2006)
Cho, Y., Kim, J.K., Ryu, J., Won, C.I., Kim, C.M., Kim, D., Kim, D.S.: BetaMol: a molecular modeling, analysis and visualization software based on the beta-complex and the quasi-triangulation. Journal of Advanced Mechanical Design, Systems, and Manufacturing 6(3), 389–403 (2012)
Cho, Y., Kim, D., Kim, D.S.: Topology representation for the Voronoi diagram of 3D spheres. International Journal of CAD/CAM 5(1), 59–68 (2005), http://www.ijcc.org
Kim, D.S., Cho, Y., Kim, D.: Euclidean Voronoi diagram of 3D balls and its computation via tracing edges. Computer-Aided Design 37(13), 1412–1424 (2005)
Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, 2nd edn. John Wiley & Sons, Chichester (1999)
Munkres, J.R.: Elements of Algebraic Topology. Perseus Press (1984)
Boissonnat, J.D., Yvinec, M.: Algorithmic Geometry. Cambridge University Press, Cambridge (1998)
Kim, D.S., Kim, D., Cho, Y., Sugihara, K.: Quasi-triangulation and interworld data structure in three dimensions. Computer-Aided Design 38(7), 808–819 (2006)
Kim, D.S., Cho, Y., Sugihara, K.: Quasi-worlds and quasi-operators on quasi-triangulations. Computer-Aided Design 42(10), 874–888 (2010)
Kim, D.S., Cho, Y., Ryu, J., Kim, J.K., Kim, D.: Anomalies in quasi-triangulations and beta-complexes of spherical atoms in molecules. Computer-Aided Design 45(1), 35–52 (2013)
Kim, J.K., Kim, D.S.: Betasuperposer: Superposition of protein surfaces using beta-shapes. Journal of Biomolecular Structure & Dynamics 30(6), 684–700 (2012)
Dunbrack Jr., R.L.: Rotamer libraries in the 21st century. Current Opinion in Structural Biology 12(4), 431–440 (2002)
Dunbrack Jr., R.L., Karplus, M.: Backbone-dependent rotamer library for proteins. Journal of Molecular Biology 230(2), 543–574 (1993)
Dunbrack Jr., R.L., Karplus, M.: Conformational analysis of the backbone-dependent rotamer preferences of protein sidechains. Journal of Molecular Biology 1(5), 334–340 (1994)
Kono, H.: Rotamer libraries for molecular modeling and design of proteins. In: Park, S.J., Cochran, J.R. (eds.) Protein Engineering and Design (2009)
Chazelle, B., Kingsford, C., Singh, M.: The inapproximability of side-chain positioning. Technical report, Princeton University (2004)
Fung, H., Rao, S., Floudas, C., Prokopyev, O., Pardalos, P., Rendl, F.: Computational comparison studies of quadratic assignment like formulations for the In silico sequence selection problem in De Novo protein design. Journal of Combinatorial Optimization 10(1), 41–60 (2005)
Pierce, N.A., Winfree, E.: Protein design is NP-hard. Protein Engineering 15(10), 779–782 (2002)
Althaus, E., Kohlbacher, O., Lenhof, H.P., Müller, P.: A combinatorial approach to protein docking with flexible side-chains. In: RECOMB 2000 Proceedings of the Fourth Annual International Conference on Computational Molecular Biology, pp. 15–24 (2000)
Althaus, E., Kohlbacher, O., Lenhof, H.P., Müller, P.: A combinatorial approach to protein docking with flexible side chains. Journal of Computational Biology 9(4), 597–612 (2002)
Lee, C., Subbiah, S.: Prediction of protein side-chain conformation by packing optimization. Journal of Molecular Biology 217(2), 373–388 (1991)
Tuffery, P., Etchebest, C., Hazout, S., Lavery, R.: A new approach to the rapid determination of protein side chain conformations. Journal of Biomolecular Structure & Dynamics 8(6), 1267–1289 (1991)
Leach, A.R.: Molecular Modelling: Principles and Applications. Prentice Hall (2001)
Ryu, J., Kim, D.S.: Protein structure optimization by side-chain positioning via beta-complex. Journal of Global Optimization (2012), doi: 10.1007/s10898-012-9886-3
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Seo, J., Kim, JK., Ryu, J., Lavor, C., Mucherino, A., Kim, DS. (2014). BetaMDGP: Protein Structure Determination Algorithm Based on the Beta-complex. In: Gavrilova, M.L., Tan, C.J.K. (eds) Transactions on Computational Science XXII. Lecture Notes in Computer Science, vol 8360. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54212-1_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-54212-1_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-54211-4
Online ISBN: 978-3-642-54212-1
eBook Packages: Computer ScienceComputer Science (R0)