Skip to main content

Enzymatic Numerical P Systems Using Elementary Arithmetic Operations

  • Conference paper
Membrane Computing (CMC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8340))

Included in the following conference series:

  • 701 Accesses

Abstract

We prove that all-parallel enzymatic numerical P systems whose production functions can be expressed as a combination of sums, differences, products and integer divisions characterise PSPACE when working in polynomial time. We also show that, when only sums and differences are available, exactly the problems in P can be solved in polynomial time. These results are proved by showing how EN P systems and random access machines, running in polynomial time and using the same basic operations, can simulate each other efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bertoni, A., Mauri, G., Sabadini, N.: A characterization of the class of functions computable in polynomial time on random access machines. In: STOC 1981 Proceedings of the Thirteenth Annual ACM Symposium on Theory of Computing, pp. 168–176 (1981), http://dx.doi.org/10.1145/800076.802470

  2. Bottoni, P., Martin-Vide, C., Păun, G., Rozenberg, G.: Membrane systems with promoters/inhibitors. Acta Informatica 38(10), 695–720 (2002), http://dx.doi.org/10.1007/s00236-002-0090-7

    Article  MATH  MathSciNet  Google Scholar 

  3. Buiu, C., Vasile, C., Arsene, O.: Development of membrane controllers for mobile robots. Information Sciences 187, 33–51 (2012), http://dx.doi.org/10.1016/j.ins.2011.10.007

    Article  Google Scholar 

  4. Cook, S.A., Reckhow, R.A.: Time bounded random access machines. Journal of Computer and System Sciences 7, 354–375 (1973), http://dx.doi.org/10.1016/S0022-00007380029-7

    Google Scholar 

  5. Hartmanis, J., Simon, J.: On the power of multiplication in random access machines. In: IEEE Conference Record of 15th Annual Symposium on Switching and Automata Theory, pp. 13–23 (1974), http://dx.doi.org/10.1109/SWAT.1974.20

  6. Leporati, A., Porreca, A.E., Zandron, C., Mauri, G.: Improved universality results for parallel enzymatic numerical P systems. International Journal of Unconventional Computing 9, 385–404 (2013), http://www.oldcitypublishing.com/IJUC/IJUCcontents/IJUCv9n5-6contents.html

    Google Scholar 

  7. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1993)

    Google Scholar 

  8. Păun, G., Păun, R.: Membrane computing and economics: Numerical P systems. Fundamenta Informaticae 73(1-2), 213–227 (2006), http://iospress.metapress.com/content/7xyefwrwy7mkg46a/

    MATH  MathSciNet  Google Scholar 

  9. Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane Computing. Oxford University Press (2010)

    Google Scholar 

  10. Pavel, A.B., Arsene, O., Buiu, C.: Enzymatic numerical P systems – A new class of membrane computing systems. In: Li, K., Tang, Z., Li, R., Nagar, A.K., Thamburaj, R. (eds.) Proceedings 2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA 2010), pp. 1331–1336 (2010), http://dx.doi.org/10.1109/BICTA.2010.5645071

  11. Pavel, A.B., Buiu, C.: Using enzymatic numerical P systems for modeling mobile robot controllers. Natural Computing 11(3), 387–393 (2012), http://dx.doi.org/10.1007/s11047-011-9286-5

    Article  MATH  MathSciNet  Google Scholar 

  12. Vasile, C.I., Pavel, A.B., Dumitrache, I., Păun, G.: On the power of enzymatic numerical P systems. Acta Informatica 49, 395–412 (2012), http://dx.doi.org/10.1007/s00236-012-0166-y

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Leporati, A., Mauri, G., Porreca, A.E., Zandron, C. (2014). Enzymatic Numerical P Systems Using Elementary Arithmetic Operations. In: Alhazov, A., Cojocaru, S., Gheorghe, M., Rogozhin, Y., Rozenberg, G., Salomaa, A. (eds) Membrane Computing. CMC 2013. Lecture Notes in Computer Science, vol 8340. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54239-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54239-8_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54238-1

  • Online ISBN: 978-3-642-54239-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics