Abstract
We prove that all-parallel enzymatic numerical P systems whose production functions can be expressed as a combination of sums, differences, products and integer divisions characterise PSPACE when working in polynomial time. We also show that, when only sums and differences are available, exactly the problems in P can be solved in polynomial time. These results are proved by showing how EN P systems and random access machines, running in polynomial time and using the same basic operations, can simulate each other efficiently.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bertoni, A., Mauri, G., Sabadini, N.: A characterization of the class of functions computable in polynomial time on random access machines. In: STOC 1981 Proceedings of the Thirteenth Annual ACM Symposium on Theory of Computing, pp. 168–176 (1981), http://dx.doi.org/10.1145/800076.802470
Bottoni, P., Martin-Vide, C., Păun, G., Rozenberg, G.: Membrane systems with promoters/inhibitors. Acta Informatica 38(10), 695–720 (2002), http://dx.doi.org/10.1007/s00236-002-0090-7
Buiu, C., Vasile, C., Arsene, O.: Development of membrane controllers for mobile robots. Information Sciences 187, 33–51 (2012), http://dx.doi.org/10.1016/j.ins.2011.10.007
Cook, S.A., Reckhow, R.A.: Time bounded random access machines. Journal of Computer and System Sciences 7, 354–375 (1973), http://dx.doi.org/10.1016/S0022-00007380029-7
Hartmanis, J., Simon, J.: On the power of multiplication in random access machines. In: IEEE Conference Record of 15th Annual Symposium on Switching and Automata Theory, pp. 13–23 (1974), http://dx.doi.org/10.1109/SWAT.1974.20
Leporati, A., Porreca, A.E., Zandron, C., Mauri, G.: Improved universality results for parallel enzymatic numerical P systems. International Journal of Unconventional Computing 9, 385–404 (2013), http://www.oldcitypublishing.com/IJUC/IJUCcontents/IJUCv9n5-6contents.html
Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1993)
Păun, G., Păun, R.: Membrane computing and economics: Numerical P systems. Fundamenta Informaticae 73(1-2), 213–227 (2006), http://iospress.metapress.com/content/7xyefwrwy7mkg46a/
Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane Computing. Oxford University Press (2010)
Pavel, A.B., Arsene, O., Buiu, C.: Enzymatic numerical P systems – A new class of membrane computing systems. In: Li, K., Tang, Z., Li, R., Nagar, A.K., Thamburaj, R. (eds.) Proceedings 2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA 2010), pp. 1331–1336 (2010), http://dx.doi.org/10.1109/BICTA.2010.5645071
Pavel, A.B., Buiu, C.: Using enzymatic numerical P systems for modeling mobile robot controllers. Natural Computing 11(3), 387–393 (2012), http://dx.doi.org/10.1007/s11047-011-9286-5
Vasile, C.I., Pavel, A.B., Dumitrache, I., Păun, G.: On the power of enzymatic numerical P systems. Acta Informatica 49, 395–412 (2012), http://dx.doi.org/10.1007/s00236-012-0166-y
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Leporati, A., Mauri, G., Porreca, A.E., Zandron, C. (2014). Enzymatic Numerical P Systems Using Elementary Arithmetic Operations. In: Alhazov, A., Cojocaru, S., Gheorghe, M., Rogozhin, Y., Rozenberg, G., Salomaa, A. (eds) Membrane Computing. CMC 2013. Lecture Notes in Computer Science, vol 8340. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54239-8_18
Download citation
DOI: https://doi.org/10.1007/978-3-642-54239-8_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-54238-1
Online ISBN: 978-3-642-54239-8
eBook Packages: Computer ScienceComputer Science (R0)