Abstract
MR image-based computer heart models are powerful non-invasive tools that can help us predict the transmural electrical propagation of abnormal depolarization-repolarization waves in the presence of infarct scars (i.e., collagenous fibrosis), a major cause of sudden death; however, an important step is the customization of these models from electrophysiology studies (EP) . In this work, we used MR-EP data obtained in a pre-clinical animal model (i.e., three healthy and two infarcted swine hearts) and customized a simple mono-domain model (i.e., the Aliev-Panfilov model). Specifically, we estimated the mathematical parameters corresponding to: a) the repolarization phase from in vivo activation-recovery intervals, ARIs (recorded in vivo with a CARTO system), and b) the anisotropy ratio (from fluorescence microscopic imaging of connexin 43, Cx43). Our measurements showed that in the ischemic peri-infarct areas the ARIs intervals were shorter by ~ 14% compared to those in normal tissue, and that there was a significant reduction (> 50%) in the Cx43 density (which tunes the cell-to-cell coupling and tissue bulk conductivity) with respect to both longitudinal and transverse directions of the myocyte. In addition, we included comparisons between virtual in silico simulations of activation maps obtained with different parameters used as input to a 3D MR-based biventricular model. Our preliminary results demonstrated the feasibility of using generic parameters to customize such MR-based models; however, further quantitative studies are needed. Finally, we discussed the overall advantages and limitations of our simplified approach, along with future directions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Janse, M.J., Wit, A.L.: Electrophysiological mechanisms of ventricular arrhythmias resulting from myocardial ischemia and infarction. Physiol. Rev. 69(4), 1049–1169 (1989)
Stevenson, W.G.: Ventricular scars and VT tachycardia. Trans. Am. Clin. Assoc. 120, 403–412 (2009)
Bello, D., Fieno, D.S., Kim, R.J., et al.: Infarct morphology identifies patients with substrate for sustained ventricular tachycardia. J. Am. College of Cardiology 45(7), 1104–1110 (2005)
Codreanu, A., Odille, F., Aliot, E., et al.: Electro-anatomic characterization of post-infarct scars comparison with 3D myocardial scar reconstruction based on MR imaging. J. Am. Coll. Cardiol. 52, 839–842 (2008)
Clayton, R.H., Panfilov, A.V.: A guide to modelling cardiac electrical activity in anatomically detailed ventricles. Progress in Biophysics & Molecular Biology – Review 96(1-3), 19–43 (2008)
Detsky, J.S., Paul, G., Dick, A.J., Wright, G.A.: Reproducible classification of infarct heterogeneity using fuzzy clustering on multi-contrast delayed enhancement magnetic resonance images. IEEE Trans. Med. Imaging 28(10), 1606–1614 (2009)
Chinchapatnam, P., Rhode, K.S., Ginks, M., Rinaldi, C.A., Lambiase, P., Razavi, R., Arridge, S., Sermesant, M.: Model-Based imaging of cardiac apparent conductivity and local conduction velocity for planning of therapy. IEEE Trans. Med. Imaging 27(11), 1631–1642 (2008)
Sermesant, M., Delingette, H., Ayache, N.: An electromechanical model of the heart for image analysis and simulations. IEEE Transactions in Medical Imaging 25(5), 612–625 (2006)
Pop, M., Sermesant, M., Flor, R., Pierre, C., Mansi, T., Oduneye, S., Barry, J., Coudiere, Y., Crystal, E., Ayache, N., Wright, G.A.: In vivo Contact EP Data and ex vivo MR-Based Computer Models: Registration and Model-Dependent Errors. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.) STACOM 2012. LNCS, vol. 7746, pp. 364–374. Springer, Heidelberg (2013)
Pop, M., Sermesant, M., Mansi, T., Crystal, E., Ghate, S., Peyrat, J.M., Lashevsky, I., Qiang, B., McVeigh, E.R., Ayache, N., Wright, G.A.: Correspondence between simple 3D MRI-based computer models and in-vivo EP measures in swine with chronic infarctions. IEEE Transactions on Biomedical Engineering 58(12), 3483–3486 (2011)
Gepstein, L., Hayam, G., Ben-HAim, S.A.: Activation-repolarization coupling in the normal swine endocardium. Circulation 96, 4036–4043 (1997)
Aliev, R., Panfilov, A.V.: A simple two variables model of cardiac excitation. Chaos, Soliton and Fractals 7(3), 293–301 (1996)
Zhang, Y., Wang, H., Kovacs, A., Kanter, E.M., Yamada, K.A.: Reduced expression of Cx43 attenuates ventricular remodelling after myocardial infarction via impaired TBF-B signaling. American Journal of Physiology, Heart and Circ. Physiol 298(2), H477–H487 (2010)
Nash, M.P., Panfilov, A.V.: Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias. Prog. Biophys. Molec. Biol. 85, 501–522 (2004)
Pop, M., Sermesant, M., Liu, G., Relan, J., Mansi, T., Soong, A., Peyrat, J.-M., Truong, M.V., Fefer, P., McVeigh, E.R., Delingette, H., Dick, A.J., Ayache, N., Wright, G.A.: Construction of 3D MR image-based computer models of pathologic hearts, augmented with histology and optical imaging to characterize the action potential propagation. Medical Image Analysis 16(2), 505–523 (2012)
Ursell, P.C., Gardner, P.I., Albala, A., Fenoglio, J., Wit, A.L.: Structural and electrophysiological changes in the epicardial border zone of canine myocardial infarcts during infarct healing. Circulation Res. 56, 436–451 (1985)
Jansen, J., van Veen, T.A.B., de Jong, S., vand der Nagel, R., van Rijen, H.V.M., et al.: Reduced Cx43 expression triggers increased fibrosis due to enhanced fibroblast activity. Circulation Arrhythmia and Electrophsiology 5, 380–390 (2012)
Pop, M., Ghugre, N., Ramanan, V., Morikawa, L., Stanisz, G., Dick, A.J., Wright, G.A.: Quantification of fibrosis in infarcted swine hearts by ex vivo late gadolinium enhancement and diffusion-weighted MRI methods. Physics in Medicine and Biology 58(15), 5009–5028 (2013)
Talbot, H., Duriez, C., Courtecuisse, H., Relan, J., Sermesant, M., Cotin, S., Delingette, H.: Towards Real-Time Computation of Cardiac Electrophysiology for Training Simulator. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.) STACOM 2012. LNCS, vol. 7746, pp. 298–306. Springer, Heidelberg (2013)
Oduneye, S.O., Biswas, L., Ghate, S., Ramanan, V., Barry, J., Laish-FarKash, A., Kadmon, E., Zeidan Shwiri, T., Crystal, E., Wright, G.A.: The feasibility of endocardial propagation mapping using MR guidance in a swine model and comparison with standard electro-anatomical mapping. IEEE Trans. Med. Imaging 31(4), 977–983 (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pop, M. et al. (2014). Progress on Customization of Predictive MRI-Based Macroscopic Models from Experimental Data. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds) Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges. STACOM 2013. Lecture Notes in Computer Science, vol 8330. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54268-8_18
Download citation
DOI: https://doi.org/10.1007/978-3-642-54268-8_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-54267-1
Online ISBN: 978-3-642-54268-8
eBook Packages: Computer ScienceComputer Science (R0)