Skip to main content

Progress on Customization of Predictive MRI-Based Macroscopic Models from Experimental Data

  • Conference paper
Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges (STACOM 2013)

Abstract

MR image-based computer heart models are powerful non-invasive tools that can help us predict the transmural electrical propagation of abnormal depolarization-repolarization waves in the presence of infarct scars (i.e., collagenous fibrosis), a major cause of sudden death; however, an important step is the customization of these models from electrophysiology studies (EP) . In this work, we used MR-EP data obtained in a pre-clinical animal model (i.e., three healthy and two infarcted swine hearts) and customized a simple mono-domain model (i.e., the Aliev-Panfilov model). Specifically, we estimated the mathematical parameters corresponding to: a) the repolarization phase from in vivo activation-recovery intervals, ARIs (recorded in vivo with a CARTO system), and b) the anisotropy ratio (from fluorescence microscopic imaging of connexin 43, Cx43). Our measurements showed that in the ischemic peri-infarct areas the ARIs intervals were shorter by ~ 14% compared to those in normal tissue, and that there was a significant reduction (> 50%) in the Cx43 density (which tunes the cell-to-cell coupling and tissue bulk conductivity) with respect to both longitudinal and transverse directions of the myocyte. In addition, we included comparisons between virtual in silico simulations of activation maps obtained with different parameters used as input to a 3D MR-based biventricular model. Our preliminary results demonstrated the feasibility of using generic parameters to customize such MR-based models; however, further quantitative studies are needed. Finally, we discussed the overall advantages and limitations of our simplified approach, along with future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Janse, M.J., Wit, A.L.: Electrophysiological mechanisms of ventricular arrhythmias resulting from myocardial ischemia and infarction. Physiol. Rev. 69(4), 1049–1169 (1989)

    Google Scholar 

  2. Stevenson, W.G.: Ventricular scars and VT tachycardia. Trans. Am. Clin. Assoc. 120, 403–412 (2009)

    Google Scholar 

  3. Bello, D., Fieno, D.S., Kim, R.J., et al.: Infarct morphology identifies patients with substrate for sustained ventricular tachycardia. J. Am. College of Cardiology 45(7), 1104–1110 (2005)

    Article  Google Scholar 

  4. Codreanu, A., Odille, F., Aliot, E., et al.: Electro-anatomic characterization of post-infarct scars comparison with 3D myocardial scar reconstruction based on MR imaging. J. Am. Coll. Cardiol. 52, 839–842 (2008)

    Article  Google Scholar 

  5. Clayton, R.H., Panfilov, A.V.: A guide to modelling cardiac electrical activity in anatomically detailed ventricles. Progress in Biophysics & Molecular Biology – Review 96(1-3), 19–43 (2008)

    Article  Google Scholar 

  6. Detsky, J.S., Paul, G., Dick, A.J., Wright, G.A.: Reproducible classification of infarct heterogeneity using fuzzy clustering on multi-contrast delayed enhancement magnetic resonance images. IEEE Trans. Med. Imaging 28(10), 1606–1614 (2009)

    Article  Google Scholar 

  7. Chinchapatnam, P., Rhode, K.S., Ginks, M., Rinaldi, C.A., Lambiase, P., Razavi, R., Arridge, S., Sermesant, M.: Model-Based imaging of cardiac apparent conductivity and local conduction velocity for planning of therapy. IEEE Trans. Med. Imaging 27(11), 1631–1642 (2008)

    Article  Google Scholar 

  8. Sermesant, M., Delingette, H., Ayache, N.: An electromechanical model of the heart for image analysis and simulations. IEEE Transactions in Medical Imaging 25(5), 612–625 (2006)

    Article  Google Scholar 

  9. Pop, M., Sermesant, M., Flor, R., Pierre, C., Mansi, T., Oduneye, S., Barry, J., Coudiere, Y., Crystal, E., Ayache, N., Wright, G.A.: In vivo Contact EP Data and ex vivo MR-Based Computer Models: Registration and Model-Dependent Errors. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.) STACOM 2012. LNCS, vol. 7746, pp. 364–374. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  10. Pop, M., Sermesant, M., Mansi, T., Crystal, E., Ghate, S., Peyrat, J.M., Lashevsky, I., Qiang, B., McVeigh, E.R., Ayache, N., Wright, G.A.: Correspondence between simple 3D MRI-based computer models and in-vivo EP measures in swine with chronic infarctions. IEEE Transactions on Biomedical Engineering 58(12), 3483–3486 (2011)

    Article  Google Scholar 

  11. Gepstein, L., Hayam, G., Ben-HAim, S.A.: Activation-repolarization coupling in the normal swine endocardium. Circulation 96, 4036–4043 (1997)

    Article  Google Scholar 

  12. Aliev, R., Panfilov, A.V.: A simple two variables model of cardiac excitation. Chaos, Soliton and Fractals 7(3), 293–301 (1996)

    Article  Google Scholar 

  13. Zhang, Y., Wang, H., Kovacs, A., Kanter, E.M., Yamada, K.A.: Reduced expression of Cx43 attenuates ventricular remodelling after myocardial infarction via impaired TBF-B signaling. American Journal of Physiology, Heart and Circ. Physiol 298(2), H477–H487 (2010)

    Google Scholar 

  14. Nash, M.P., Panfilov, A.V.: Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias. Prog. Biophys. Molec. Biol. 85, 501–522 (2004)

    Article  Google Scholar 

  15. Pop, M., Sermesant, M., Liu, G., Relan, J., Mansi, T., Soong, A., Peyrat, J.-M., Truong, M.V., Fefer, P., McVeigh, E.R., Delingette, H., Dick, A.J., Ayache, N., Wright, G.A.: Construction of 3D MR image-based computer models of pathologic hearts, augmented with histology and optical imaging to characterize the action potential propagation. Medical Image Analysis 16(2), 505–523 (2012)

    Article  Google Scholar 

  16. Ursell, P.C., Gardner, P.I., Albala, A., Fenoglio, J., Wit, A.L.: Structural and electrophysiological changes in the epicardial border zone of canine myocardial infarcts during infarct healing. Circulation Res. 56, 436–451 (1985)

    Article  Google Scholar 

  17. Jansen, J., van Veen, T.A.B., de Jong, S., vand der Nagel, R., van Rijen, H.V.M., et al.: Reduced Cx43 expression triggers increased fibrosis due to enhanced fibroblast activity. Circulation Arrhythmia and Electrophsiology 5, 380–390 (2012)

    Article  Google Scholar 

  18. Pop, M., Ghugre, N., Ramanan, V., Morikawa, L., Stanisz, G., Dick, A.J., Wright, G.A.: Quantification of fibrosis in infarcted swine hearts by ex vivo late gadolinium enhancement and diffusion-weighted MRI methods. Physics in Medicine and Biology 58(15), 5009–5028 (2013)

    Article  Google Scholar 

  19. Talbot, H., Duriez, C., Courtecuisse, H., Relan, J., Sermesant, M., Cotin, S., Delingette, H.: Towards Real-Time Computation of Cardiac Electrophysiology for Training Simulator. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.) STACOM 2012. LNCS, vol. 7746, pp. 298–306. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  20. Oduneye, S.O., Biswas, L., Ghate, S., Ramanan, V., Barry, J., Laish-FarKash, A., Kadmon, E., Zeidan Shwiri, T., Crystal, E., Wright, G.A.: The feasibility of endocardial propagation mapping using MR guidance in a swine model and comparison with standard electro-anatomical mapping. IEEE Trans. Med. Imaging 31(4), 977–983 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pop, M. et al. (2014). Progress on Customization of Predictive MRI-Based Macroscopic Models from Experimental Data. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds) Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges. STACOM 2013. Lecture Notes in Computer Science, vol 8330. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54268-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54268-8_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54267-1

  • Online ISBN: 978-3-642-54268-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics