Skip to main content

Multiscale Study on Hemodynamics in Patient-Specific Thoracic Aortic Coarctation

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8330))

Abstract

In this challenge, we intended to mimic the patient’s cardiovascular system by using 0D-3D connected multiscale model. The purpose of the multiscale analysis is to find out the appropriate boundary conditions of the innominate artery (IA), left common carotid artery (LCA) and left subclavian artery (LSA) in the local 3D computational fluid dynamics simulation. Firstly, a lumped parameter model(LPM) of the patient’s circulatory system was established which could mimic both the rest and stress conditions by adjusting parameters like elastance function of the heart and the peripheral resistance, since that administering is oprenaline leads to the patient’s heart beat rate and peripheral resistance changes. Secondly, the values of parameters in the LPM were slightly revised to match the following conditions: 1. provided pressure and flow rate curves, 2. provided blood distribution ratio of the AcsAo, IA, LCA and LSA. Finally, we got the outlet conditions of the IA, LCA and LSA, and then connecting the 0D model and the 3D model at each time step. As the results, we got the streamlines, pressure drop through the coarctation, pressure gradient, and some other parameters by coupled multiscale simuation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Migliavacca, F., Dubini, G., Pennati, G., Pietrabissa, R., Fumero, R., Hsia, T.Y., de Leval, M.R.: Computational model of the fluid dynamics in systemic-to-pulmonary shunts. J. Biomech. 33(5), 549–557 (2000)

    Article  Google Scholar 

  2. Moghadam, M.E., Vignon-Clementel, I.E., Figliola, R., Marsden, A.L.: A modular numerical method for implicit 0D/3D coupling in cardiovascular finite element simulations. J. Comput. Phys. 244, 63–79 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhao, X. et al. (2014). Multiscale Study on Hemodynamics in Patient-Specific Thoracic Aortic Coarctation. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds) Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges. STACOM 2013. Lecture Notes in Computer Science, vol 8330. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54268-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54268-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54267-1

  • Online ISBN: 978-3-642-54268-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics