Skip to main content

Riemann-Finsler Multi-valued Geodesic Tractography for HARDI

  • Conference paper
  • First Online:
Visualization and Processing of Tensors and Higher Order Descriptors for Multi-Valued Data

Abstract

We introduce a geodesic based tractography method for High Angular Resolution Diffusion Imaging (HARDI). The concepts used are similar to the ones in geodesic based tractography for Diffusion Tensor Imaging (DTI). In DTI, the inverse of the second-order diffusion tensor is used to define the manifold where the geodesics are traced. HARDI models have been developed to resolve complex fiber populations within a voxel, and higher order tensors (HOT) are possible representations for HARDI data. In our framework, we apply Finsler geometry, which extends Riemannian geometry to a directionally dependent metric. A Finsler metric is defined in terms of HARDI higher order tensors. Furthermore, the Euler-Lagrange geodesic equations are derived based on the Finsler geometry. In contrast to other geodesic based tractography algorithms, the multi-valued numerical solution of the geodesic equations can be obtained. This gives the possibility to capture all geodesics arriving at a single voxel instead of only computing the shortest one. Results are analyzed to show the potential and characteristics of our algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aganj, I., Lenglet, C., Sapiro, G.: ODF reconstruction in q-ball imaging with solid angle consideration. In: The 6th IEEE International Symposium on Biomedical Imaging (ISBI), Boston, pp. 1398–1401 (2009)

    Google Scholar 

  2. Alexander, D.C., Barker, G., Arridge, S.: Detection and modeling of non-Gaussian apparent diffusion coefficient profiles in human brain data. Magn. Reson. Med. 48(2), 331–340 (2002)

    Article  Google Scholar 

  3. Astola, L., Florack, L.: Finsler geometry on higher order tensor fields and applications to high angular resolution diffusion imaging. Int. J. Comput. Vis. 92, 325–336 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. Basser, P.J., Pierpaoli, C.: Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J. Magn. Reson. 111(1), 209–219 (1996)

    Article  Google Scholar 

  5. Behrens, T.E.J., Berg, H.J., Jbabdi, S., Rushworth, M.F.S., Woolrich, M.W.: Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? NeuroImage 34(1), 144–155 (2007)

    Article  Google Scholar 

  6. Blair, D.E.: Inversion Theory and Conformal Mapping. American Mathematical Society, Providence (2000)

    MATH  Google Scholar 

  7. Lenglet, C., Deriche, R., Faugeras, O.D.: Inferring white matter geometry from diffusion tensor MRI: application to connectivity mapping. In: Proceedings of 8th European Conference on Computer Vision, Prague, pp. 127–140 (2004)

    Google Scholar 

  8. Campbell, J.S.: Diffusion imaging of white matter fibre tracts. PhD thesis, McGill University, Montreal (2004)

    Google Scholar 

  9. Chern, S., Shen, Z.: Lectures on Finsler geometry. Nankai Tracts Math. 6 (2003)

    Google Scholar 

  10. Morris, D.M., Embleton, K.V., Parker, G.J.: Probabilistic fibre tracking: differentiation of connections from chance events. NeuroImage 42(4), 1329–1339 (2008)

    Article  Google Scholar 

  11. Descoteaux, M.: High angular resolution diffusion MRI: from local estimation to segmentation and tractography. Ph.D. Thesis, Universite de Nice, Sophia Antipolis (2008)

    Google Scholar 

  12. Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Regularized, fast and robust analytical q-ball imaging. Magn. Reson. Med. 58(3) (2007)

    Google Scholar 

  13. Descoteaux, M., Deriche, R., Knoesche, T., Anwander, A.: Deterministic and probabilistic tractography based on complex fiber orientation distributions. IEEE Trans. Med. Imaging 2(28), 269–286 (2008)

    Google Scholar 

  14. Donnell, L.O., Haker, S., Westin, C.F.: New approaches to estimation of white matter connectivity in diffusion tensor MRI: Elliptic PDEs and geodesics in a tensor-warped space. In: International Conference on Medical Image Computing and Computer-Assisted Intervention – MICCAI’02, Tokyo, vol. 2488, pp. 459–466 (2002)

    Google Scholar 

  15. Hagmann, P., Reese, T., Tseng, W., Meuli, R., Thiran, J., Wedeen, V.: Diffusion spectrum imaging tractography in complex cerebral white matter: an investigation of the centrum semiovale. In: ISMRM, Kyoto, vol. 12. International Society for Magnetic Resonance in Medicine (2004)

    Google Scholar 

  16. Lenglet, C., Prados, E., Pons, J.P., Deriche, R., Faugeras, O.: Brain connectivity mapping using Riemannian geometry, control theory and PDEs. SIAM J. Imaging Sci. (SIIMS) 2(2), 285–322 (2009)

    Google Scholar 

  17. Melonakos, J., Pichon, E., Angenent, S., Tannenbaum, A.: Finsler active contours. IEEE Trans. Pattern Anal. Mach. Intell. 30(3), 412–423 (2008)

    Article  Google Scholar 

  18. Mo, X.: An Introduction to Finsler Geometry. Volume 1 of Peking University Series in Mathematics. World Scientific, Singapore (2006)

    Google Scholar 

  19. Ozarslan, E., Shepherd, T., Vemuri, B., Blackband, S., Mareci, T.: A nonparametric reconstruction and its matrix implementation for the diffusion orientation transform (dot). In: The 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro (ISBI), Arlington, pp. 85–88 (2006)

    Google Scholar 

  20. Parker, G.J.M., Alexander, D.C.: Probabilistic anatomical connectivity derived from the microscopic persistent angular structure of cerebral tissue. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 360(1457), 893–902 (2005)

    Article  Google Scholar 

  21. Péchaud, M., Descoteaux, M., Keriven, R.: Brain connectivity using geodesics in HARDI. In: International Conference on Medical Image Computing and Computer-Assisted Intervention – MICCAI’09, London, pp. 482–489 (2009)

    Google Scholar 

  22. Pichon, E., Westin, C., Tannenbaum, A.: A Hamilton-Jacobi-Bellman approach to high angular resolution diffusion tractography. In: International Conference on Medical Image Computing and Computer-Assisted Intervention – MICCAI’05, Palm Springs. Lecture Notes in Computer Science, pp. 180–187 (2005)

    Google Scholar 

  23. Rund, H.: The Hamilton-Jacobi Theory in the Calculus of Variations. Robert E. Krieger Publishing, Huntington (1973)

    MATH  Google Scholar 

  24. Sepasian, N., ten Thije Boonkkamp, J., ter Haar Romeny, B., Vilanova, A.: Multivalued geodesic ray-tracing for computing brain connections using diffusion tensor imaging. SIAM J. Imaging Sci. 5(2), 483–504 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  25. Sepasian, N., ten Thije Boonkkamp, J., Vilanova, A., ter Haar Romeny, B.: Multi-valued geodesic based fiber tracking for diffusion tensor imaging. In: MICCAI’09, Diffusion Modeling and the Fiber Cup Workshop, London, vol. 1, pp. 6–13 (2009)

    Google Scholar 

  26. Shen, Z.: Lectures on Finsler Geometry. World Scientific, Singapore (2001)

    Book  MATH  Google Scholar 

  27. Tournier, J.D., Calamante, F., Connelly, A.: Robust determination of the fibre orientation distribution in diffusion mri: non-negativity constrained super-resolved spherical deconvolution. NeuroImage 35(4), 1459–1472 (2007)

    Article  Google Scholar 

  28. Tristán-Vega, A., Westin, C.F., Aja-Fernández, S.: Estimation of fiber orientation probability density functions in high angular resolution diffusion imaging. NeuroImage 47(2), 638–650 (2009)

    Article  Google Scholar 

  29. Tuch, D., Reese, T., Wiegell, M., Makris, N., Belliveau, J.W., Wedeen, V.: High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn. Reson. Med. 48, 577–582 (2002)

    Article  Google Scholar 

  30. Tuch, D.S.: Q-ball imaging. Magn. Reson. Med. 52(6), 1358–1372 (2004)

    Article  Google Scholar 

  31. Wedeen, V.J., Hagmann, P., Tseng, W.Y.I., Reese, T.G., Weisskoff, R.M.: Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn. Reson. Med. 54(6), 1377–1386 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Vilanova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sepasian, N., ten Thije Boonkkamp, J.H.M., Florack, L.M.J., Ter Haar Romeny, B.M., Vilanova, A. (2014). Riemann-Finsler Multi-valued Geodesic Tractography for HARDI. In: Westin, CF., Vilanova, A., Burgeth, B. (eds) Visualization and Processing of Tensors and Higher Order Descriptors for Multi-Valued Data. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54301-2_9

Download citation

Publish with us

Policies and ethics