Abstract
In-memory big data OLAP(on-line analytical processing) is time consuming task for data access latency and complex star join processing overhead. GPU is introduced to DBMSs for its remarkable parallel computing power but also restricted by its limited GPU memory size and low PCI-E bandwidth between GPU and memory. GPU is suitable for linear processing with its powerful SIMD(Single Instruction Multiple Data) parallel processing, and lack efficiency for complex control and logic processing. So how to optimize management for dimension tables and fact table, how to dispatch different processing stages of OLAP(Select, Project, Join, Grouping, Aggregate) between CPU and GPU devices and how to minimize data movement latency and maximize parallel processing efficiency of GPU are important for a hybrid GPU/CPU OLAP platform. We propose a hybrid GPU/CPU Bitmap Join index(HG-Bitmap Join index) for OLAP to exploit a GPU memory resident join index mechanism to accelerate star join in a star schema OLAP workload. We design memory constraint bitmap join index with fine granularity keyword based bitmaps from TOP K predicates to accurately assign specified GPU memory size for specified frequent keyword bitmap join indexes. An OLAP query is transformed into bitwise operations on matched bitmaps first to generate global bitmap filter to minimize big fact table scan cost. In this mechanism, GPU is fully utilized with simple bitmap store and processing, the small bitmap filter from GPU to memory minimizes the data movement overhead, and the hybrid GPU/CPU join index can improve OLAP performance dramatically.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Valduriez, P.: Join Indices. ACM Trans. Database Syst. 12(2), 218–246 (1987)
http://docs.oracle.com/cd/B10500_01/server.920/a96520/indexes.htm
Boncz, P.A., Kersten, M.L., Manegold, S.: Breaking the memory wall in MonetDB. Commun. ACM 51(12), 77–85 (2008)
Zukowski, M., Boncz, P.A.: Vectorwise: Beyond Column Stores. IEEE Data Eng. Bull. 35(1), 21–27 (2012)
http://www.sap.com/solutions/technology/in-memory-computing-platform/hana/overview/index.epx
DeWitt, D.J., Katz, R.H., Olken, F., Shapiro, L.D., Stonebraker, M., Wood, D.A.: Implementation techniques for main memory database systems. In: SIGMOD, pp. 1–8 (1984)
Kitsuregawa, M., Nakayama, M., Takagi, M.: The effect of bucket size tuning in the dynamic hybrid GRACE hash join method. In: VLDB, pp. 257–266 (1989)
Nakayama, M., Kitsuregawa, M., Takagi, M.: Hash-partitioned join method using dynamic destaging strategy. In: VLDB, pp. 468–478 (1988)
Manegold, S., Boncz, P.A., Nes, N.: Cache-Conscious Radix-Decluster Projections. In: VLDB 2004, pp. 684–695 (2004)
He, B., Yang, K., Fang, R., Lu, M., Govindaraju, N.K., Luo, Q., Sander, P.V.: Relational joins on graphics processors. In: SIGMOD Conference 2008, pp. 511–524 (2008)
He, B., Lu, M., Yang, K., Fang, R., Govindaraju, N.K., Luo, Q., Sander, P.V.: Relational query coprocessing on graphics processors. ACM Trans. Database Syst. 34(4) (2009)
Blanas, S., Li, Y., Patel, J.M.: Design and evaluation of main memory hash join algorithms for multi-core CPUs. In: SIGMOD Conference 2011, pp. 37–48 (2011)
Abadi, D.J., Madden, S., Hachem, N.: Column-stores vs. row-stores: how different are they really? In: SIGMOD Conference, pp. 967–980 (2008)
Zhang, Y., Wang, S., Lu, J.: Improving performance by creating a native join-index for OLAP. Frontiers of Computer Science in China 5(2), 236–249 (2011)
Pirk, H., Manegold, S., Kersten, M.: Accelerating foreign-key joins using asymmetric memory channels. In: Proceedings of International Conference on Very Large Data Bases (VLDB 2011), pp. 585–597 (2011)
Aouiche, K., Darmont, J., Boussaid, O., Bentayeb, F.: Automatic Selection of Bitmap Join Indexes in Data Warehouses. CoRR abs/cs/0703113 (2007)
Bellatreche, L., Missaoui, R., Necir, H., Drias, H.: Selection and Pruning Algorithms for Bitmap Index Selection Problem Using Data Mining. In: Song, I.-Y., Eder, J., Nguyen, T.M. (eds.) DaWaK 2007. LNCS, vol. 4654, pp. 221–230. Springer, Heidelberg (2007)
Bellatreche, L., Missaoui, R., Necir, H., Drias, H.: A Data Mining Approach for selecting Bitmap Join Indices. JCSE 1(2), 177–194 (2007)
Hamid Necir, A.: data mining approach for efficient selection bitmap join index. IJDMMM 2(3), 238–251 (2010)
Andrzejewski, W., Wrembel, R.: GPU-WAH: Applying GPUs to Compressing Bitmap Indexes with Word Aligned Hybrid. DEXA (2), 315–329 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhang, Y., Zhang, Y., Su, M., Wang, F., Chen, H. (2014). HG-Bitmap Join Index: A Hybrid GPU/CPU Bitmap Join Index Mechanism for OLAP. In: Huang, Z., Liu, C., He, J., Huang, G. (eds) Web Information Systems Engineering – WISE 2013 Workshops. WISE 2013. Lecture Notes in Computer Science, vol 8182. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54370-8_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-54370-8_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-54369-2
Online ISBN: 978-3-642-54370-8
eBook Packages: Computer ScienceComputer Science (R0)