Skip to main content

A Semantically-Enabled System for Road Sign Management

  • Conference paper
Web Information Systems Engineering – WISE 2013 Workshops (WISE 2013)

Abstract

The road sign is an important facility which manages the road traffic safety and eases the road traffic congestion. This paper proposes a Semantically-enabled System for Road Sign Management (SeRSM). The SeRSM system is built based on LarKC, which is a platform for scalable semantic data processing. In the SeRSM system, the users can select the corresponding operations through the interface integrated with a map service. These operations are sent to Jetty server for corresponding processing. They include sending some SPARQL query to invoke the corresponding workflow in the LarKC platform and to retrieve and reason the massive data stored in the data layer of LarKC and to return the result to the Jetty server. The paper made ​​a full description of technical points such as the design objective, data sources, data integration, noisy data processing, detection of road consistency effectiveness. It also describes the system’s user interface and basic functions in the end. The SeRSM has great value and social significance for improving traffic efficiency and traffic safety through successful applications in Zhenjiang and Yiwu in China.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Fang, C.Y., Chen, S.W., Fuh, C.S.: Road-sign detection and tracking. IEEE Transactions on Vehicular Technology 52(5), 1329–1341 (2003)

    Article  Google Scholar 

  2. Tresp, V., Huang, Y., Bundschus, M., et al.: Materializing and querying learned knowledge. In: Proc. of IRMLeS (2009)

    Google Scholar 

  3. Berners-Lee, T., Hall, W., Handler, J., et al.: A Framework for Web Science. Foundations and Trends in Web Science 1(1), 1–130 (2006)

    Article  Google Scholar 

  4. Lee, T., Park, S., Huang, Z., et al.: Toward Seoul road sign management on the larkc platform. In: Posters and Demos of ISWC 2010 (2010)

    Google Scholar 

  5. Kindberg, T., Chalmers, M., Paulos, E.: Guest Editors’ Introduction: Urban Computing. IEEE Pervasive Computing 6(3), 18–20 (2007)

    Article  Google Scholar 

  6. Huang, V., Tresp, M.: Multivariate Structured Prediction for Learning on the Semantic Web. In: Proceedings of the 20th International Conference on Inductive Logic Programming (ILP 2010) (2010)

    Google Scholar 

  7. Huang, Y., Tresp, V., Bundschus, M., Rettinger, A., Kriegel, H.-P.: Multivariate prediction for learning on the semantic web. In: Frasconi, P., Lisi, F.A., et al. (eds.) ILP 2010. LNCS, vol. 6489, pp. 92–104. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. Huang, Y., Nickel, M., Tresp, V., et al.: A scalable kernel approach to learning in semantic graphs with applications to linked data. In: Proc. of the 1st Workshop on Mining the Future Internet (2010)

    Google Scholar 

  9. Huang, Z., et al.: Evaluation and revision of reason plug-ins, LarKC deliverable D.4.7.3 (September 2011), http://www.larkc.eu/deliverables/

  10. Assel, M., Cheptsov, A., Gallizo, G., et al.: Large knowledge collider: a service-oriented platform for large-scale semantic reasoning. In: Proceedings of the International Conference on Web Intelligence, Mining and Semantics, p. 41. ACM (2011)

    Google Scholar 

  11. Huang, Z., Bal, H., Chezan, M., et al.: Final Evaluation and Revision of Plug-ins Deployed in Use-cases, LarKC Deliverable D4.7.3 (2011)

    Google Scholar 

  12. Huang, Z., Fang, J., Park, S., et al.: Noisy Semantic Data Processing in Seoul Road Sign Management System. In: Proceedings of the 10th International Semantic Web Conference (ISWC 2011), Bonn, Germany, p. 10 (2011)

    Google Scholar 

  13. Dell’Aglio, et al.: 5th periodic report on data and performances, LarKC Delieverable D6.11 (2011)

    Google Scholar 

  14. Tresp, V., Bundschus, M., Rettinger, A., Huang, Y.: Towards machine learning on the semantic web. In: da Costa, P.C.G., d’Amato, C., Fanizzi, N., Laskey, K.B., Laskey, K.J., Lukasiewicz, T., Nickles, M., Pool, M., et al. (eds.) URSW 2005 - 2007. LNCS (LNAI), vol. 5327, pp. 282–314. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Ng, J.C.W., Sayed, T.: Effect of geometric design consistency on road safety. Canadian Journal of Civil Engineering 31(2), 218–227 (2004)

    Article  Google Scholar 

  16. GB 5768.2-2009. Road traffic signs and markings– Part 2: Road traffic signs

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Qinghua, L. et al. (2014). A Semantically-Enabled System for Road Sign Management. In: Huang, Z., Liu, C., He, J., Huang, G. (eds) Web Information Systems Engineering – WISE 2013 Workshops. WISE 2013. Lecture Notes in Computer Science, vol 8182. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54370-8_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54370-8_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54369-2

  • Online ISBN: 978-3-642-54370-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics