Abstract
In this paper we construct multilevel representations in terms of a hierarchy of tensor-product generalized B-splines. These representations combine the positive properties of a non-rational model with the possibility of dealing with local refinements. We discuss their use in the context of isogeometric analysis.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bank, R.E., Smith, R.K.: A posteriori error estimates based on hierarchical bases. SIAM J. Numer. Anal. 30, 921–935 (1993)
Bazilevs, Y., Calo, V.M., Cottrell, J.A., Evans, J.A., Hughes, T.J.R., Lipton, S., Scott, M.A., Sederberg, T.W.: Isogeometric analysis using T-splines. Comput. Methods Appl. Mech. Engrg. 199, 229–263 (2010)
de Boor, C.: A Practical Guide to Splines, revised edn. Springer (2001)
Carnicer, J.M., Mainar, E., Peña, J.M.: Critical length for design purposes and Extended Chebyshev spaces. Constr. Approx. 20, 55–71 (2004)
Costantini, P.: Curve and surface construction using variable degree polynomial splines. Comput. Aided Geom. Design 17, 419–446 (2000)
Costantini, P., Lyche, T., Manni, C.: On a class of weak Tchebycheff systems. Numer. Math. 101, 333–354 (2005)
Costantini, P., Manni, C.: Geometric construction of generalized cubic splines. Rend. Matem. Appl. 26, 327–338 (2006)
Costantini, P., Manni, C., Pelosi, F., Sampoli, M.L.: Quasi-interpolation in isogeometric analysis based on generalized B-splines. Comput. Aided Geom. Design 27, 656–668 (2010)
Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CAD and FEA. John Wiley & Sons (2009)
Dokken, T., Lyche, T., Pettersen, K.F.: Polynomial splines over locally refined box-partitions. Comput. Aided Geom. Design 30, 331–356 (2013)
Dörfel, M., Jüttler, B., Simeon, B.: Adaptive isogeometric analysis by local h-refinement with T-splines. Comput. Methods Appl. Mech. Engrg. 199, 264–275 (2010)
Forsey, D.R., Bartels, R.H.: Hierarchical B-spline refinement. Comput. Graph. 22, 205–212 (1988)
Giannelli, C., Jüttler, B., Speleers, H.: THB-splines: the truncated basis for hierarchical splines. Comput. Aided Geom. Design 29, 485–498 (2012)
Giannelli, C., Jüttler, B., Speleers, H.: Strongly stable bases for adaptively refined multilevel spline spaces. Adv. Comput. Math. (to appear, 2013)
Gould, P.L.: Introduction to Linear Elasticity. Springer, Berlin (1999)
Grinspun, E., Krysl, P., Schröder, P.: CHARMS: a simple framework for adaptive simulation. ACM Trans. Graphics 21, 281–290 (2002)
Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Engrg. 194, 4135–4195 (2005)
Koch, P.E., Lyche, T.: Interpolation with exponential B-splines in tension. In: Farin, G., Hagen, H., Noltemeier, H., Knödel, W. (eds.) Geometric Modelling, pp. 173–190. Springer (1993)
Kraft, R.: Adaptive and linearly independent multilevel B-splines. In: Le Méhauté, A., Rabut, C., Schumaker, L.L. (eds.) Surface Fitting and Multiresolution Methods, pp. 209–218. Vanderbilt University Press, Nashville (1997)
Krysl, P., Grinspun, E., Schröder, P.: Natural hierarchical refinement for finite element methods. Int. J. Numer. Meth. Eng. 56, 1109–1124 (2003)
Kvasov, B.I., Sattayatham, P.: GB-splines of arbitrary order. J. Comput. Appl. Math. 104, 63–88 (1999)
Mainar, E., Peña, J.M., Sánchez-Reyes, J.: Shape preserving alternatives to the rational Bézier model. Comput. Aided Geom. Design 18, 37–60 (2001)
Manni, C., Pelosi, F., Sampoli, M.L.: Generalized B-splines as a tool in isogeometric analysis. Comput. Methods Appl. Mech. Engrg. 200, 867–881 (2011)
Manni, C., Pelosi, F., Sampoli, M.L.: Isogeometric analysis in advection-diffusion problems: tension splines approximation. J. Comput. Appl. Math. 236, 511–528 (2011)
Marušic, M., Rogina, M.: Sharp error bounds for interpolating splines in tension. J. Comput. Appl. Math. 61, 205–223 (1995)
Mazure, M.L.: Chebyshev-Bernstein bases. Comput. Aided Geom. Design 16, 649–669 (1999)
Mazure, M.L.: How to build all Chebyshevian spline spaces good for geometric design? Numer. Math. 119, 517–556 (2011)
Schumaker, L.L.: Spline Functions: Basic Theory, 3rd edn., Cambridge U.P. (2007)
Speleers, H., Dierckx, P., Vandewalle, S.: Quasi-hierarchical Powell-Sabin B-splines. Comput. Aided Geom. Design 26, 174–191 (2009)
Speleers, H., Dierckx, P., Vandewalle, S.: On the local approximation power of quasi-hierarchical Powell-Sabin splines. In: Dæhlen, M., Floater, M., Lyche, T., Merrien, J.-L., Mørken, K., Schumaker, L.L. (eds.) MMCS 2008. LNCS, vol. 5862, pp. 419–433. Springer, Heidelberg (2010)
Speleers, H., Manni, C., Pelosi, F.: From NURBS to NURPS geometries. Comput. Methods Appl. Mech. Engrg. 255, 238–254 (2013)
Speleers, H., Manni, C., Pelosi, F., Sampoli, M.L.: Isogeometric analysis with Powell-Sabin splines for advection-diffusion-reaction problems. Comput. Methods Appl. Mech. Engrg. 221–222, 132–148 (2012)
Vuong, A.-V., Giannelli, C., Jüttler, B., Simeon, B.: A hierarchical approach to adaptive local refinement in isogeometric analysis. Comput. Methods Appl. Mech. Engrg. 200, 3554–3567 (2011)
Wang, G., Fang, M.: Unified and extended form of three types of splines. J. Comput. Appl. Math. 216, 498–508 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Manni, C., Pelosi, F., Speleers, H. (2014). Local Hierarchical h-Refinements in IgA Based on Generalized B-Splines. In: Floater, M., Lyche, T., Mazure, ML., Mørken, K., Schumaker, L.L. (eds) Mathematical Methods for Curves and Surfaces. MMCS 2012. Lecture Notes in Computer Science, vol 8177. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54382-1_20
Download citation
DOI: https://doi.org/10.1007/978-3-642-54382-1_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-54381-4
Online ISBN: 978-3-642-54382-1
eBook Packages: Computer ScienceComputer Science (R0)