Abstract
High quality deformations of planar and volumetric domains are central to many computer graphics related problems like modeling, character animation, and non-rigid registration. Besides common “as-rigid-as-possible” approaches the class of nearly-isometric deformations is highly relevant to solve this kind of problems. Recent continuous deformation approaches try to find planar first order nearly-isometric deformations by integrating along approximate Killing vector fields (AKVFs). In this work we derive a generalized metric energy for deformation vector fields that has close-to-isometric AKVFs as a special case and additionally supports close-to-length-preserving, close-to-conformal as well as close-to-equiareal deformations. Like AKVF-based deformations we minimize nonlinear energies to first order using efficient linear optimizations. Our energy formulation supports nonhomogeneous as well as anisotropic behavior and we show that it is applicable to both planar and volumetric domains. We apply energy specific regularization to achieve smoothness and provide a GPU implementation for interactivity. We compare our approach to AKVF-based deformations for the planar case and demonstrate the effectiveness of our method for the 2d and 3d case.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alexa, M., Cohen-Or, D., Levin, D.: As-rigid-as-possible shape interpolation. In: Proc. SIGGRAPH, pp. 157–164 (2000)
Ben-Chen, M., Butscher, A., Solomon, J., Guibas, L.: On discrete killing vector fields and patterns on surfaces. In: Proc. SGP, pp. 1701–1711 (2010)
Ben-Chen, M., Weber, O., Gotsman, C.: Variational harmonic maps for space deformation. ACM Trans. Graph. 28(3), 34:1–34:11 (2009)
Botsch, M., Pauly, M., Gross, M., Kobbelt, L.: Primo: coupled prisms for intuitive surface modeling. In: Proc. SGP, pp. 11–20 (2006)
Botsch, M., Sorkine, O.: On linear variational surface deformation methods. IEEE TVCG 14(1), 213–230 (2008)
do Carmo, M.P.: Differential Geometry of Curves and Surfaces. Prentice–Hall (1976)
Cashman, T.J., Hormann, K.: A continuous, editable representation for deforming mesh sequences with separate signals for time, pose and shape. Comput. Graph. Forum 31(2), 735–744 (2012)
Chao, I., Pinkall, U., Sanan, P., Schröder, P.: A simple geometric model for elastic deformations. ACM Trans. Graph. 29(4), 1–38 (2010)
Chen, Y., Davis, T.A., Hager, W.W., Rajamanickam, S.: Algorithm 887: Cholmod, supernodal sparse cholesky factorization and update/downdate. ACM Trans. Math. Softw. 35(3), 1–22 (2008)
Floater, M.S., Hormann, K.: Surface parameterization: a tutorial and survey. In: Advances in Multiresolution for Geometric Modelling, pp. 157–186. Springer (2005)
von Funck, W., Theisel, H., Seidel, H.P.: Vector field based shape deformations. ACM Trans. Graph. 25(3), 1118–1125 (2006)
von Funck, W., Theisel, H., Seidel, H.P.: Explicit control of vector field based shape deformations. In: Proc. Pacific Graphics, pp. 291–300 (2007)
Heeren, B., Rumpf, M., Wardetzky, M., Wirth, B.: Time-discrete geodesics in the space of shells. Comp. Graph. Forum 31(5), 1755–1764 (2012)
Hormann, K., Greiner, G.: MIPS: An efficient global parametrization method. In: Curve and Surface Design 1999, pp. 153–162. Vanderbilt Press (2000)
Hormann, K., Polthier, K., Sheffer, A.: Mesh parameterization: Theory and practice. In: Proc. SIGGRAPH Asia (2008)
Hormann, K., Floater, M.S.: Mean value coordinates for arbitrary planar polygons. ACM Trans. Graph. 25(4), 1424–1441 (2006)
Igarashi, T., Moscovich, T., Hughes, J.F.: As-rigid-as-possible shape manipulation. ACM Trans. Graph. 24(3), 1134–1141 (2005)
Jacobson, A., Baran, I., Popović, J., Sorkine, O.: Bounded biharmonic weights for real-time deformation. ACM Trans. Graph. 30(4), 1–78 (2011)
Joshi, P., Meyer, M., DeRose, T., Green, B., Sanocki, T.: Harmonic coordinates for character articulation. ACM Trans. Graph. 26(3) (2007)
Karni, Z., Freedman, D., Gotsman, C.: Energy-based image deformation. In: Proc. SGP, pp. 1257–1268 (2009)
Kilian, M., Mitra, N.J., Pottmann, H.: Geometric modeling in shape space. ACM Trans. Graph. 26(3), 1–64 (2007)
Lipman, Y.: Bounded distortion mapping spaces for triangular meshes. ACM Trans. Graph. 31(4), 108:1–108:13 (2012)
Lipman, Y., Levin, D., Cohen-Or, D.: Green coordinates. ACM Trans. Graph. 27(3), 78:1–78:10 (2008)
Liu, L., Zhang, L., Xu, Y., Gotsman, C., Gortler, S.J.: A local/global approach to mesh parameterization. In: Proc. SGP, pp. 1495–1504 (2008)
Martinez Esturo, J., Rössl, C., Theisel, H.: Continuous deformations by isometry preserving shape integration. In: Boissonnat, J.-D., Chenin, P., Cohen, A., Gout, C., Lyche, T., Mazure, M.-L., Schumaker, L. (eds.) Curves and Surfaces 2011. LNCS, vol. 6920, pp. 456–472. Springer, Heidelberg (2012)
McAdams, A., Zhu, Y., Selle, A., Empey, M., Tamstorf, R., Teran, J., Sifakis, E.: Efficient elasticity for character skinning with contact and collisions. ACM Trans. Graph. 30(4), 1–37 (2011)
Minka, T.P.: Old and new matrix algebra useful for statistics. Tech. rep., MIT (2001)
Müller, M., Dorsey, J., McMillan, L., Jagnow, R., Cutler, B.: Stable real-time deformations. In: Proc. SCA, pp. 49–54 (2002)
Solomon, J., Ben-Chen, M., Butscher, A., Guibas, L.: As-killing-as-possible vector fields for planar deformation. Comput. Graph. Forum 30(5), 1543–1552 (2011)
Solomon, J., Ben-Chen, M., Butscher, A., Guibas, L.: Discovery of intrinsic primitives on triangle meshes. Comput. Graph. Forum 30(2), 365–374 (2011)
Sorkine, O., Alexa, M.: As-rigid-as-possible surface modeling. In: Proc. SGP, pp. 109–116 (2007)
Sýkora, D., Dingliana, J., Collins, S.: As-rigid-as-possible image registration for hand-drawn cartoon animations. In: Proc. NPAR, pp. 25–33 (2009)
Weber, O., Ben-Chen, M., Gotsman, C., Hormann, K.: A complex view of barycentric mappings. Comput. Graph. Forum 30(5), 1533–1542 (2011)
Weber, O., Myles, A., Zorin, D.: Computing extremal quasiconformal maps. Comput. Graph. Forum 31(5), 1679–1689 (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Martinez Esturo, J., Rössl, C., Theisel, H. (2014). Generalized Metric Energies for Continuous Shape Deformation. In: Floater, M., Lyche, T., Mazure, ML., Mørken, K., Schumaker, L.L. (eds) Mathematical Methods for Curves and Surfaces. MMCS 2012. Lecture Notes in Computer Science, vol 8177. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54382-1_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-54382-1_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-54381-4
Online ISBN: 978-3-642-54382-1
eBook Packages: Computer ScienceComputer Science (R0)