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Abstract. Taskgraphs model a broad range of parallel applications. De-
spite static scheduling, processor failures can be overcome with the help
of task duplication, which we explored in a previous proposal. With the
advent of processor frequency scaling, energy can be saved by the runtime
system as it is informed about gaps in the schedule and task dependen-
cies, and thus can slow down processors as long as dependencies do not
lead to a makespan increase. In the case of a fault, a makespan increase
can be traded for additional energy investment by accelerating the task
duplicates that run tasks from the crashed core. We evaluate our pro-
posal with a large benchmark suite of taskgraphs with different sizes for
a generic manycore architecture.

Keywords: taskgraph scheduling, task duplication, fault tolerance, fre-
quency scaling, energy efficiency, power-aware computing, manycore
computing, grid computing.

1 Introduction

Many parallel applications can be decomposed into a set of tasks prior to execu-
tion. Thus they can be modeled by static taskgraphs, where each node is a task
with a given runtime, and arcs (u, v) represent dependabilities, where a task u
produces output of a known size upon completion, which must be transferred
to task v that can only start if that input is available. For a given machine (we
assume p identical processing units), a taskgraph must be scheduled, i.e. each
task must be assigned to a processor with a given start time, when it is executed
without interruption until it completes. For a valid schedule, at most one task
may be active at any time, and the start times must represent the dependabilities
between tasks, taking into account the communcation time if dependent tasks
are mapped to different processing units. Typically, the goal of the scheduler is
to minimize the makespan, i.e. the time when the last processing unit completes
processing its assigned tasks.

At any time, a processing unit may fail, either because it is shutdown by its
owner (a frequent situation in grids with contributed resources) or because of a
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software fault (application or system hangs, a not too infrequent case in many-
cores with new architecture and thus new operating systems and compilers),
or because of a hardware or network fault. In that case, redundancy must be
available to continue processing of the taskgraph. As an alternative to temporal
redundancy in the form of dynamic re-scheduling, which often leads to notably
increased makespan, use of structural redundancy in the form of task duplica-
tion has emerged as a static technique to cope with failures. While it is clear
that placements of tasks and duplicates on different processing units will en-
sure tolerance of one processor failure, the question of overhead in the fault-free
case arises. While we developed techniques to avoid overhead by placing dupli-
cates appropriately [4,3], the additional processing of duplicates still increases
the energy consumption of the taskgraph computation, which emerges as a new
measure besides — and sometimes more important as — the makespan.

On the other hand, processor frequency scaling opens the dual possibility to
save energy by slowing down tasks, thus filling gaps in the schedule without
increasing makespan, and accelerating duplicates in case of a failure, to trade
makespan increase against additional energy investment in this case. While fre-
quency scaling typically is handled by the operating system according to usage
rate, this is not appropriate for taskgraph computations as the local operating
system has no information about the dependencies between tasks on processors
belonging to different operating system instances. This information is available
in the runtime system for the taskgraph computation, and manycores like In-
tel SCC delegate frequency scaling to user level and thus enable a reduction of
energy consumption for our application scenario. Thus, the placement of tasks
enables trading energy savings in the fault-free case against overhead in the fault
case, and trading overhead in the fault case against additional energy investment.
In contrast to other works, that optimize makespan for a given energy budget,
our problem is to optimize energy consumption given a target makespan and the
user preferences above.

Energy-efficiency in taskgraph scheduling has been considered in previous
works. Kianzad et al. [7] consider frequency scaling in taskgraph scheduling,
however they focus on integration of the scheduling and scaling steps. In con-
trast, we start with an existing schedule, insert duplicates for fault-tolerance
and perform frequency scaling. Cong et al. [2] consider energy savings by ex-
ploiting input-dependent variations of task runtimes, i.e. they focus on dynamic
frequency scaling, while we compute frequencies statically. Pruhs et al. [8] con-
sider the situation where a certain energy budget is available for the taskgraph
computation, and statically compute schedules with optimal makespan for that
budget by scaling processor frequencies accordingly. Yet, none of those works
considers fault-tolerance. In contrast, works that use task duplication for fault-
tolerance, such as [5], do not consider energy consumption. While Unsal et al.
[9] investigate energy aspects of fault-tolerance in real-time systems, they use
application-level fault-tolerance techniques instead of task duplication. Thus,
the combination of the three aspects is, to our knowledge, not known from the
literature.
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We compare several placement strategies for duplicates with the help of a
simulator for a taskgraph runtime system [3] that we adapt to take frequency
scaling into account and enable a forecast of energy consumption. The simulator
assumes a generic manycore architecture with a standard model for dynamic
power consumption, i.e. at frequency f , a core consumes power proportional to
fα, where 2 ≤ α ≤ 3, cf. e.g. [8]. We use α = 3 based on previous experiments
on the Intel SCC [1], but leave out constant factors and low-order terms for
simplicity. As the frequency and thus the power consumption is fixed during
execution of a task, the energy spent for that task is the product of power and
task runtime.

As inputs, we take the taskgraphs from a benchmark suite of synthetic
taskgraphs [6] that is organized according to several structural criteria, and thus
allows to categorize results for certain types of taskgraphs. Our results indicate
that the average energy improvement is between 30% and 80%, where 20% to
65% results from scaling down the frequency for idle times and up to 20% results
from slow down tasks and thus scaling down the frequency for tasks.

The remainder of this paper is structured as follows. In Section 2 we present
the extended scheduling algorithm. Section 3 presents and analyzes the simula-
tion results. In Section 4, we conclude and give an outlook on open problems
and future work.

2 Efficient Fault-Tolerant Scheduling

We start by reviewing the ideas from [4], and briefly introduce two extensions
[3]. We concentrate on improving the energy efficiency of taskgraph schedules
by scaling the frequencies of cores down, where tasks can be prolonged without
any increase of the makespan. Furthermore we also improve the performance of
the schedules in case of a fault, where the execution of the duplicates leads to
an overhead and thus to a higher makespan. In these cases the duplicates can
be accelerated by scaling up the frequency of the corresponding cores to reduce
or completely undo the overhead.

2.1 Previous Approach

The approach of Fechner et al. [4] provides fault-tolerance to taskgraph schedules
by task duplication. It starts with an already existing schedule (and taskgraph)
and extends the schedule by including a duplicate task for each original task. The
scheduling is done prior to execution, thus it is done statically. A duplicate (D)
has to be placed on another Processing Unit (PU) than its corresponding original
task, so that in case of a PU failure the schedule execution can be continued.
We assume a fail-stop model, where the failure might be induced by a hardware,
software, or network fault.

If the original task has finished its work it sends a commit message to the
corresponding D, so that the D can abort its execution. Thus in every case
either only the original task or only the D is finished and has to send its results
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to the successor tasks. Because of the communication overhead, a D starts with
a little delay called slack.

Mostly there are gaps in the schedule because of dependencies between the
tasks. Especially those gaps can be used for an efficient placement of the Ds. In
some cases the gaps might be too small to place a D. So the placement could
lead to a shift of all successor tasks and thus to an overhead in the fault-free
case. To avoid such an overhead and also to minimize the overhead in case of a
fault, three different strategies for the placement are presented in [4].

In the first strategy only so called dummy duplicates (DD) are used. A DD is
a placeholder for a D. It is placed with runtime 0 and only in case of a fault it is
extended to a full duplicate task. Such a DD can be placed in gaps or between
succeeding tasks. In this way, overhead in the fault free case can be avoided in
general, but this strategy does not take much advantage of the gaps. In Fig. 1b
an example placement of the DDs is illustrated. The corresponding taskgraph
and input schedule are shown in Fig. 1a. For a better understanding the slack
and the communication costs are disregarded.

The second strategy uses the schedules from the first strategy and converts
DDs to Ds if there is a gap before the DDs. Only those DDs are converted that
are placed at the end time of the corresponding original tasks. The size of the
converted Ds is bounded by the length of the gap before the Ds. Thus in case of
a fault a fraction of the D is already executed so that it only has to be extended
for the remaining part of the original task. The modified schedule is illustrated
in Fig. 1c. The second strategy uses the gaps more efficiently in comparison with
the first strategy.

In the third strategy some of the gaps in the input schedule are partly extended
to fill that gaps more efficiently with Ds. In this strategy a small overhead is
allowed in the fault free case for a better overhead in case of a fault. Fig. 1d
illustrates the modified schedule.

In [3] we firstly include the consideration of the communication times between
the tasks, because those communication times influence the placement of the Ds
and DDs. For that we assume to have a homogeneous network. The different
communication times in the taskgraphs represent the different amounts of in-
formation that has to be transferred to the corresponding successor tasks. For
example one task only needs an integer value, another task needs an array of
floats, etc. A second extension in [3] is that we also consider task slowdowns
as a special kind of fault. When the performance of a task decreases (because
the PU is used for other duties, e.g. in grids with contributed resources), the
corresponding D or DD is used instead if it can be finished earlier.

2.2 Energy Efficiency Improvements

In our previous work our goal was to guarantee no overhead in a fault free case
and to have only a minimal overhead in case of a fault. But today and also
in the future energy consumption might be more important to minimize. Usu-
ally the operating system offers some energy functions and automatically scales
the processor frequency with respect to the usage rate. Especially for taskgraph
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Fig. 1. An example taskgraph and three strategies in comparison

scheduling such automatic energy functions cannot be used because the oper-
ating system has no information about the schedule and task dependencies and
thus cannot decide if it can slowdown a task and scale down the core frequency
without increasing the makespan of the whole schedule. In such a case only the
scheduler resp. the underlying runtime system has the information about the
taskgraphs and schedules. Thus the energy management has to be done there.

In our approach we implemented a simulator for a taskgraph runtime system
that supports energy management functions. One example platform where one
can use such a runtime system is the Single-Chip Cloud Computer (SCC), which
is a research processor from Intel. The SCC consists of 24 dual-core tiles, i.e. 48
cores. With this platform, the user can scale the frequency and voltage of cores
during the runtime of a program. The frequency scaling can be done for each
tile, the voltage scaling only for groups of 8 cores. To calculate for each task
the lowest possible frequency one has to check if a task could be extended or
slowed down without increasing the makespan. It is important to note that the
prolongation of a task could lead to a shift of the start time for some other
tasks. But as long as these shifts do not have any influence on the makespan the
extension does not have to be reduced. In the fault free case (where it is only
senseful to extend or slowdown the tasks) only original tasks and their corre-
sponding duplicates have to be considered. Because DDs are only placeholders
for a duplicate, they are placed with runtime 0, and thus do not have to be
extended. Duplicates on the other hand could also be slowed down or only be
shifted, if the corresponding original task is slowed down too. But in case of only
a shift the energy consumption would be higher than if the duplicate is also be
slowed down. Thus, a slowdown of the duplicate in this case would be preferable
to get the highest energy improvement. In the following the implementation of
the simulator is described before we also present techniques that use frequency
scaling to improve the makespan and thus also the overhead in case of a fault.
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2.3 Implementation

Our implementation generates and evaluates three schedules for each taskgraph:
a basic schedule without duplicates and without frequency scaling, a sched-
ule extended by duplicates, and a schedule where frequency scaling is applied
to tasks and duplicates. The latter two are evaluated for the fault-free case
(see below), and for the case of a fault (see next subsection).

As plenty of optimal and heuristic taskgraph schedulers are available, we did
not integrate the scheduler, but input a taskgraph (in standard taskgraph for-
mat) and a corresponding schedule (in the corresponding schedule format). For
this schedule, each task is assigned frequency fnormal = 1. This is a relative fre-
quency, as all frequencies used in the sequel, to be multiplied with the frequency
necessary to achieve the desired makespan (in wall-clock time). As we use the
frequency only to compute energy consumption and relate different energy con-
sumptions by percentages, using a relative frequency simplifies matters without
any disadvantage. In each gap (between executing two tasks or after finishing
the last task till the makespan), we assume a core to run at a frequency fidle.
For schedules without frequency scaling, we both consider fidle = fnormal and
fidle � fnormal.

The second schedule is generated by placing duplicates as explained in the
previous subsection. The duplicates also are assigned frequency fnormal = 1.

A third schedule is generated by scaling all tasks and their duplicates, i.e. by
assigning task frequencies fa possibly smaller than fnormal, that still allow to
finish the schedule by the makespan. As frequency scaling is a computational
expensive non-linear optimization problem, we apply a greedy heuristic, to be
explained below.

The energy consumption for each schedule is then computed for the fault-
free case. For each task (and duplicate) Ta, its runtime ta and frequency fa are
used to compute the task energy consumption ta · f3

a as the product of time
and power consumption. For each gap, the energy consumption is computed
similarly by using the length of the gap and the idle frequency fidle. The total
energy consumption is obtained by summing the energy consumption over all
tasks, duplicates, and gaps.

The frequency scaling heuristic basically tries to scale down the frequency of a
task followed by a gap of length x to fa < fnormal such that the task runtime ta is
increased by a so-called buffer x′ ≤ x, i.e. by a factor fnormal/fa = (ta + x′)/ta
such that the gap is filled as far as possible but timing constraints from de-
pendencies are not violated. Consider first an example without duplicates de-
picted in Fig. 2. Task T1 with runtime 4 is followed by a gap of length 2, yet
can only be extended by 1 time unit (f1 = 4/(4 + 1) = 0.8 because of the
communication to task T3 that needs 3 time units and must be completed by
the start time 8 of task T3. Task T2 cannot be extended although it is fol-
lowed by a gap, because the communication time to task T4 leaves no room.
Task T3 can be scaled down to f3 = 0.5 because the gap to the makespan
has length 2. Task T4 cannot be scaled down as there is no gap afterwards.
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Fig. 2. Example schedule to illustrate the frequency scaling heuristic

If the resulting task frequency is lower than fidle, then it is set to fidle. The
tasks are considered one by one in the order given in the schedule.

A duplicate is treated like a task for computing the buffer. To avoid the
situation that a task finishes later than its duplicate after frequency scaling,
each task and its duplicate are scaled down to the same frequency, by using the
minimum of the two buffers. Furthermore, if a task is followed by a gap and a
duplicate, then the task can take over the duplicate task’s buffer if it can use it
without violating other constraints. This means that the duplicate must also be
followed by a gap and its start time is increased accordingly, i.e. the gap is moved
before the duplicate. Note that a dummy duplicate is treated like a duplicate
with runtime 0.

2.4 Performance Improvements in Case of a Fault

Until now we have only considered energy efficiency in the fault-free case. How-
ever, in case of a fault, avoiding a reduction of performance might be more impor-
tant than the energy efficiency. We can use frequency scaling as well to improve
the performance in such a case. When a PU crashes, it cannot be restarted as we
use the fail-stop-model as explained above. Thus all following tasks on that PU
will not be executed and the corresponding duplicates and dummy duplicates
on the other PUs have to be extended and used to complete the schedule. Be-
cause of the extensions there might be an overhead that could result in a longer
makespan. To minimize or totally undo this overhead one might also use some
energy management functions.

If a D or DD has to be extended, the runtime system can save the current
frequency (of that PU) and calculate the frequency that is needed to undo the
overhead. This frequency is higher than fnormal, and thus leads to increased
energy consumption. If the calculated frequency is higher than the supported
maximum frequency of that PU, the frequency is set to the maximum frequency.
Thus, the ability to undo the overhead largely depends on the frequencies that
are supported by the PUs. After the execution of the corresponding extended D
or DD the frequency can be scaled down to the previous frequency if the next
task is an original task or a D that does not have to be extended. If the next task
is a D or DD that has to be extended, the frequency can be scaled directly to the
new calculated frequency. If there is a DD that does not have to be extended and
that is placed at the finish time of the prior task without a gap, the next task
is considered. If the next task starts at the same time where the DD is placed
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(in this case there is no gap between the tasks) and if the next task has to be
extended, the frequency can directly be scaled to that calculated frequency. Only
in case of a gap the frequency could be scaled down to the previous frequency.
To avoid some of the high frequencies in case of a fault one could use the buffers
from the previous subsection.

3 Experimental Results

We evaluate the energy-efficiency of our proposal with a benchmark suite of
synthetic taskgraphs [6] comprising 72,000 optimal schedules that differ in the
number of PUs (2, 4, 8, 16 and 32), the number of tasks (7 - 12, 13 - 18 and 19 -
24), edge density, the edge length and the node and edge weights. Furthermore
we also used a simple list scheduler, that maps the tasks on that PU where they
can start their execution first. For 36,000 taskgraphs, the number of tasks is
as above, to see how energy consumption for non-optimal schedules with larger
gaps can be improved. For 36,000 tasks graphs, the number of tasks is up to 250
to see how our proposal works for larger schedules.

There are totally three different variants for each strategy that result from the
consideration of the communicaton times in our previous work [3]. Variant a) is
the placement like explained above. In variant b) we use so called waitdummies
to reduce the overhead in a fault free case and in variant c) we consider some of
the communication times only in a fault case so that we can already quarantee
no overhead in a fault free case. In Fig. 3 the improvements for the different
strategies and variants and also for the original schedules without any fault-
tolerant aspects (strategy 0) are presented for the different test benchmarks
(TB). In these experiments we used the value 0.1 for fidle.

Each bar in Fig. 3 is divided into two parts. The dark part represents the
improvements of scaling down the frequency to fidle = 0.1 in gaps, the light part
represents the improvements of using the buffers to slowdown the tasks by scaling
down their frequencies. In total the average energy improvements for the different
testsets vary from around 30% for the testset TB-Optimal up to around 75% for
the testset with the large testcases generated with the simple list scheduler. As
expected most of the improvements result from the idle times (between 20% and
65%). The results reflect also that the schedules of the ”TB-Optimal” testset are
highly optimized and have only a few resp. short gaps in comparison to the other
testsets. With using also the buffers, the energy improvements can be increased
up to additional 20%. The highest improvements are for strategy 1 in all variants
(abc). This results from only using DDs in the first strategy that do not need
additional space and usually can be shifted without increasing the makespan.
For the strategies 2 and 3 (abc) the improvements are lower, because in these
cases there are a lot of Ds and thus fewer or smaller gaps.

In Fig. 4 the overhead improvements in case of a fault are presented for the test
benchmarks with small schedules, averaged over all schedules and all possible
fault positions, cf. [3]. As settings we used fidle = 0.1 and 2.0 as maximum
possible frequency. The overhead can be reduced by 27% to 38%. The highest
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Fig. 3. Average Energy improvement

Fig. 4. Overhead improvement in the fault case

improvements show in strategy 1 because the DDs have not been slowed down
in the fault free case and thus most of the DDs can still be extended without
increasing the makespan. In strategies 2 and 3 the overhead improvement is
smaller for a better energy efficiency in the fault free case, but the improvement
is still high as only the duplicates are speeded up that have to be extended in
case of a fault. We could also see that using only part of the buffer for energy
reduction in the fault-free case leads to a reduced overhead in the fault case,
however we cannot detail this for lack of space.
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4 Conclusions and Future Work

We have presented a static task scheduling algorithm that uses task dupliction
to handle processor failures and also increases the energy efficiency in a fault free
case by scaling the core frequency down for some tasks without increasing the
makespan. On the other hand we also used the frequency scaling to improve the
performance of the schedules in case of a fault by scaling up the frequency for
duplicates that have to be extended. Our results indicate that frequency scal-
ing is worthwhile for both, improving the energy efficiency for schedules with a
given makespan and also for the performance of the underlying runtime system
in case of a fault. As future work, we plan to explore optimization possibilities
by deviating from the order scheduling–duplicate placement–scaling, either by
combination of steps or different orders. Finally, we plan to extend our experi-
ments from simulations to a prototype system that we can use on the Intel SCC
or Kalray MPPA, which allow user-level frequency scaling with the restriction
that only groups of cores can scale their frequencies.
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