Skip to main content

Conjugacy in Baumslag’s Group, Generic Case Complexity, and Division in Power Circuits

  • Conference paper
LATIN 2014: Theoretical Informatics (LATIN 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8392))

Included in the following conference series:

Abstract

The conjugacy problem is the following question: given two words x, y over generators of a fixed group G, decide whether x and y are conjugated, i.e., whether there exists some z such that zx z − 1 = y in G. The conjugacy problem is more difficult than the word problem, in general. We investigate the conjugacy problem for two prominent groups: the Baumslag-Solitar group BS 1,2 and the Baumslag(-Gersten) group G 1,2. The conjugacy problem in BS 1,2 is TC 0-complete. To the best of our knowledge BS 1,2 is the first natural infinite non-commutative group where such a precise and low complexity is shown. The Baumslag group G 1,2 is an HNN-extension of BS 1,2 and its conjugacy problem is decidable G 1,2 by a result of Beese (2012). Here we show that conjugacy in G 1,2 can be solved in polynomial time in a strongly generic setting. This means that essentially for all inputs conjugacy in G 1,2 can be decided efficiently. In contrast, we show that under a plausible assumption the average case complexity of the same problem is non-elementary. Moreover, we provide a lower bound for the conjugacy problem in G 1,2 by reducing the division problem in power circuits to the conjugacy problem in G 1,2. The complexity of the division problem in power circuits is an open and interesting problem in integer arithmetic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baumslag, G.: A non-cyclic one-relator group all of whose finite quotients are cyclic. J. Austr. Math. Soc. 10(3-4), 497–498 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  2. Beese, J.: Das Konjugationsproblem in der Baumslag-Gersten-Gruppe. Diploma thesis, Fakultät Mathematik, Universität Stuttgart (2012) (in German)

    Google Scholar 

  3. Borovik, A.V., Myasnikov, A.G., Remeslennikov, V.N.: Generic Complexity of the Conjugacy Problem in HNN-Extensions and Algorithmic Stratification of Miller’s Groups. IJAC 17, 963–997 (2007)

    MATH  MathSciNet  Google Scholar 

  4. Ceccherini-Silberstein, T., Grigorchuk, R.I., de la Harpe, P.: Amenability and paradoxical decompositions for pseudogroups and discrete metric spaces. Tr. Mat. Inst. Steklova 224, 68–111 (1999)

    Google Scholar 

  5. Craven, M.J., Jimbo, H.C.: Evolutionary algorithm solution of the multiple conjugacy search problem in groups, and its applications to cryptography. Groups Complexity Cryptology 4, 135–165 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Diekert, V., Laun, J., Ushakov, A.: Efficient algorithms for highly compressed data: The word problem in Higman’s group is in P. IJAC 22, 1–19 (2012)

    MathSciNet  Google Scholar 

  7. Diekert, V., Miasnikov, A., Weiß, A.: Conjugacy in Baumslag’s group, generic case complexity, and division in power circuits. CoRR, abs/1309.5314 (2013)

    Google Scholar 

  8. Gersten, S.M.: Isodiametric and isoperimetric inequalities in group extensions (1991)

    Google Scholar 

  9. Grigoriev, D., Shpilrain, V.: Authentication from matrix conjugation. Groups Complexity Cryptology 1, 199–205 (2009)

    MATH  MathSciNet  Google Scholar 

  10. Hesse, W.: Division is in uniform TC0. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 104–114. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  11. Hesse, W., Allender, E., Barrington, D.A.M.: Uniform constant-depth threshold circuits for division and iterated multiplication. JCCS 65, 695–716 (2002)

    MATH  MathSciNet  Google Scholar 

  12. Kapovich, I., Miasnikov, A.G., Schupp, P., Shpilrain, V.: Generic-case complexity, decision problems in group theory and random walks. J. Algebra 264, 665–694 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kapovich, I., Myasnikov, A., Schupp, P., Shpilrain, V.: Average-case complexity and decision problems in group theory. Adv. Math. 190, 343–359 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lyndon, R., Schupp, P.: Combinatorial Group Theory, 1st edn. (1977)

    Google Scholar 

  15. Magnus, W.: Das Identitätsproblem für Gruppen mit einer definierenden Relation. Math. Ann. 106, 295–307 (1932)

    Article  MathSciNet  Google Scholar 

  16. Miller III, C.F.: On group-theoretic decision problems and their classification. Annals of Mathematics Studies, vol. 68. Princeton University Press (1971)

    Google Scholar 

  17. Myasnikov, A., Shpilrain, V., Ushakov, A.: Group-based Cryptography. Advanced courses in mathematics. CRM Barcelona, Birkhäuser (2008)

    MATH  Google Scholar 

  18. Myasnikov, A.G., Ushakov, A., Won, D.W.: The Word Problem in the Baumslag group with a non-elementary Dehn function is polynomial time decidable. Journal of Algebra 345, 324–342 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. Myasnikov, A.G., Ushakov, A., Won, D.W.: Power circuits, exponential algebra, and time complexity. IJAC 22, 51 pages (2012)

    Google Scholar 

  20. Shpilrain, V., Zapata, G.: Combinatorial group theory and public key cryptography. Appl. Algebra Eng. Comm. Comput. 17, 291–302 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  21. Vollmer, H.: Introduction to Circuit Complexity. Springer, Berlin (1999)

    Book  Google Scholar 

  22. Woess, W.: Random walks on infinite graphs and groups - a survey on selected topics. London Math. Soc. 26, 1–60 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  23. Woess, W.: Random Walks on Infinite Graphs and Groups. Cambridge Univ. Press (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Diekert, V., Myasnikov, A.G., Weiß, A. (2014). Conjugacy in Baumslag’s Group, Generic Case Complexity, and Division in Power Circuits. In: Pardo, A., Viola, A. (eds) LATIN 2014: Theoretical Informatics. LATIN 2014. Lecture Notes in Computer Science, vol 8392. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54423-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54423-1_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54422-4

  • Online ISBN: 978-3-642-54423-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics