Abstract
The conjugacy problem is the following question: given two words x, y over generators of a fixed group G, decide whether x and y are conjugated, i.e., whether there exists some z such that zx z − 1 = y in G. The conjugacy problem is more difficult than the word problem, in general. We investigate the conjugacy problem for two prominent groups: the Baumslag-Solitar group BS 1,2 and the Baumslag(-Gersten) group G 1,2. The conjugacy problem in BS 1,2 is TC 0-complete. To the best of our knowledge BS 1,2 is the first natural infinite non-commutative group where such a precise and low complexity is shown. The Baumslag group G 1,2 is an HNN-extension of BS 1,2 and its conjugacy problem is decidable G 1,2 by a result of Beese (2012). Here we show that conjugacy in G 1,2 can be solved in polynomial time in a strongly generic setting. This means that essentially for all inputs conjugacy in G 1,2 can be decided efficiently. In contrast, we show that under a plausible assumption the average case complexity of the same problem is non-elementary. Moreover, we provide a lower bound for the conjugacy problem in G 1,2 by reducing the division problem in power circuits to the conjugacy problem in G 1,2. The complexity of the division problem in power circuits is an open and interesting problem in integer arithmetic.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baumslag, G.: A non-cyclic one-relator group all of whose finite quotients are cyclic. J. Austr. Math. Soc. 10(3-4), 497–498 (1969)
Beese, J.: Das Konjugationsproblem in der Baumslag-Gersten-Gruppe. Diploma thesis, Fakultät Mathematik, Universität Stuttgart (2012) (in German)
Borovik, A.V., Myasnikov, A.G., Remeslennikov, V.N.: Generic Complexity of the Conjugacy Problem in HNN-Extensions and Algorithmic Stratification of Miller’s Groups. IJAC 17, 963–997 (2007)
Ceccherini-Silberstein, T., Grigorchuk, R.I., de la Harpe, P.: Amenability and paradoxical decompositions for pseudogroups and discrete metric spaces. Tr. Mat. Inst. Steklova 224, 68–111 (1999)
Craven, M.J., Jimbo, H.C.: Evolutionary algorithm solution of the multiple conjugacy search problem in groups, and its applications to cryptography. Groups Complexity Cryptology 4, 135–165 (2012)
Diekert, V., Laun, J., Ushakov, A.: Efficient algorithms for highly compressed data: The word problem in Higman’s group is in P. IJAC 22, 1–19 (2012)
Diekert, V., Miasnikov, A., Weiß, A.: Conjugacy in Baumslag’s group, generic case complexity, and division in power circuits. CoRR, abs/1309.5314 (2013)
Gersten, S.M.: Isodiametric and isoperimetric inequalities in group extensions (1991)
Grigoriev, D., Shpilrain, V.: Authentication from matrix conjugation. Groups Complexity Cryptology 1, 199–205 (2009)
Hesse, W.: Division is in uniform TC0. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 104–114. Springer, Heidelberg (2001)
Hesse, W., Allender, E., Barrington, D.A.M.: Uniform constant-depth threshold circuits for division and iterated multiplication. JCCS 65, 695–716 (2002)
Kapovich, I., Miasnikov, A.G., Schupp, P., Shpilrain, V.: Generic-case complexity, decision problems in group theory and random walks. J. Algebra 264, 665–694 (2003)
Kapovich, I., Myasnikov, A., Schupp, P., Shpilrain, V.: Average-case complexity and decision problems in group theory. Adv. Math. 190, 343–359 (2005)
Lyndon, R., Schupp, P.: Combinatorial Group Theory, 1st edn. (1977)
Magnus, W.: Das Identitätsproblem für Gruppen mit einer definierenden Relation. Math. Ann. 106, 295–307 (1932)
Miller III, C.F.: On group-theoretic decision problems and their classification. Annals of Mathematics Studies, vol. 68. Princeton University Press (1971)
Myasnikov, A., Shpilrain, V., Ushakov, A.: Group-based Cryptography. Advanced courses in mathematics. CRM Barcelona, Birkhäuser (2008)
Myasnikov, A.G., Ushakov, A., Won, D.W.: The Word Problem in the Baumslag group with a non-elementary Dehn function is polynomial time decidable. Journal of Algebra 345, 324–342 (2011)
Myasnikov, A.G., Ushakov, A., Won, D.W.: Power circuits, exponential algebra, and time complexity. IJAC 22, 51 pages (2012)
Shpilrain, V., Zapata, G.: Combinatorial group theory and public key cryptography. Appl. Algebra Eng. Comm. Comput. 17, 291–302 (2006)
Vollmer, H.: Introduction to Circuit Complexity. Springer, Berlin (1999)
Woess, W.: Random walks on infinite graphs and groups - a survey on selected topics. London Math. Soc. 26, 1–60 (1994)
Woess, W.: Random Walks on Infinite Graphs and Groups. Cambridge Univ. Press (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Diekert, V., Myasnikov, A.G., Weiß, A. (2014). Conjugacy in Baumslag’s Group, Generic Case Complexity, and Division in Power Circuits. In: Pardo, A., Viola, A. (eds) LATIN 2014: Theoretical Informatics. LATIN 2014. Lecture Notes in Computer Science, vol 8392. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54423-1_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-54423-1_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-54422-4
Online ISBN: 978-3-642-54423-1
eBook Packages: Computer ScienceComputer Science (R0)