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Abstract. The conjugacy is the following question in algorithmic group theory:
given two wordsx, y over generators of a fixed groupG, decide whetherx andy
are conjugated, i.e., whether there exists somez such thatzxz−1 = y in G. The
conjugacy problem is more difficult than the word problem, ingeneral. We in-
vestigate the conjugacy problem for two prominent groups: the Baumslag-Solitar
groupBS1,2 and the Baumslag(-Gersten) groupG1,2. The conjugacy problem
in BS1,2 is TC

0-complete. To the best of our knowledgeBS1,2 is the first nat-
ural infinite non-commutative group where such a precise andlow complexity
is shown. The Baumslag groupG1,2 is an HNN extension ofBS1,2. We show
that the conjugacy problem is decidable (which has been known before); but our
results go far beyond decidability. In particular, we are able to show that conju-
gacy inG1,2 can be solved in polynomial time in a strongly generic setting. This
means that essentially for all inputs conjugacy inG1,2 can be decided efficiently.
In contrast, we show that under a plausible assumption the average case complex-
ity of the same problem is non-elementary. Moreover, we provide a lower bound
for the conjugacy problem inG1,2 by reducing the division problem in power
circuits to the conjugacy problem inG1,2. The complexity of the division prob-
lem in power circuits is an open and interesting problem in integer arithmetic. To
date it is believed that this problem has non-elementary time complexity.
Another contribution of the paper concerns a general statement about HNN ex-
tension of the formG =

〈

H, b | bab−1 = ϕ(a), a ∈ A
〉

with a finitely generated
base groupH . We show that the complement ofH is strongly generic if and only
if A 6= H 6= B. This is the situation forG1,2; and yields an important piece
of information why it is possible to solve conjugacy forG1,2 in strongly generic
polynomial time. Note also that the complement ofH is strongly generic if and
only if the Schreier graph ofG with respect to the subgroupH is non-amenable.

Introduction

More than 100 years ago Max Dehn introduced the word problem and the conjugacy
problem as fundamental decision problems in group theory. LetG be a finitely gener-
ated group.Word problem: Given two wordsx, y written in generators, decide whether
x = y in G. Conjugacy problem: Given two wordsx, y written in generators, decide
whetherx ∼G y in G, i.e., decide whether there existsz such thatzxz−1 = y in G. In
recent years, conjugacy played an important role in non-commutative cryptography, see
e.g. [7,11,22]. These applications use that is is easy to create elements which are conju-
gated, but to check whether two given elements are conjugated might be difficult even if
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the word problem is easy. In fact, there are groups where the word problem is easy but
the conjugacy problem is undecidable [18]. Frequently, in cryptographic applications
the ambient group is fixed. The focus in this paper is on the conjugacy problem inG1,2.
In 1969 Gilbert Baumslag defined the groupG1,2 as an example of a one-relator group
which enjoys certain remarkable properties. It was introduced as an infinite non-cyclic
group all of whose finite quotients are cyclic [2]. In particular, it is not residually finite;
but being one-relator it has a decidable word problem [17]. The groupG1,2 is gener-
ated by generatorsa andb subject to a single relationbab−1a = a2bab−1. Another
way to understandG1,2 is to view it as an HNN extension of the even more promi-
nent Baumslag-Solitar groupBS1,2. The groupBS1,2 is defined by a single relation
tat−1 = a2 wherea andt are generators3. The complexity of the word problem and
conjugacy problem inBS1,2 are very low; indeed, we show that they areTC

0-complete.
However, such a low complexity does not transfer to the complexity of the correspond-
ing problems in HHN-extensions likeG1,2. Gersten showed that the Dehn function of
G1,2 is non-elementary [9]. Moreover, Magnus’ break-down procedure [16] on G1,2

is non-elementary, too. This means that the time complexityfor the standard algorithm
to solve the word problem inG1,2 cannot be bounded by any fixed tower of exponen-
tials. Therefore, for many years,G1,2 was the simplest candidate for a group with an
extremely difficult word problem. However, Myasnikov, Ushakov, and Won showed in
[20] that the word problem of the Baumslag group is solvable in polynomial time! In
order to achieve a polynomial time bound they introduced a versatile data structure for
integer arithmetic which they calledpower circuit. The data structure supports +,−, ≤,
and(x, y) 7→ 2xy, a restricted version of multiplication which includes exponentiation
x 7→ 2x. Thus, by iteration it is possible to represent huge values (involving the tower
function) by very small circuits. Still, all operations above can be performed in poly-
nomial time. On the other hand there are notoriously difficult arithmetical problems in
power circuits, too. A very important one is division. The input are power circuitsC
andC′ representing integersm andm′; the question is whetherm dividesm′. The
problem is clearly decidable by convertingm andm′ into binary; but this procedure is
non-elementary. So far, no idea for any better algorithm is known. It is plausible to as-
sume that the problem “division in power circuits” has no elementary time complexity
at all.

In the present paper we show a tight relation between the problems “division in
power circuits” and conjugacy inG1,2. Our results concerning the Baumslag-Solitar
groupBS1,2, the Baumslag groupG1,2, its generic case complexity, and division in
power circuits are as follows.

– The conjugacy problem ofBS1,2 is TC
0-complete.

– There is a strongly generic polynomial time algorithm for the conjugacy problem in
G1,2. This means, the difficult instances for the algorithm are exponentially sparse,
and therefore, on random inputs, conjugacy can be solved efficiently.

– If “division in power circuits” is non-elementary in the worst case, then the conju-
gacy problem inG1,2 is non-elementary on the average.

3 Adding a generatorb and a relationbab−1 = t results inG1,2. Indeed, due tobab−1 = t, we
can removet and we obtain exactly the presentation ofG1,2 above.
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– A random walk in the Cayley graph ofG1,2 ends with exponentially decreasing
probability in BS1,2. In other terms, the Schreier graph ofG1,2 with respect to
BS1,2 is non-amenable.

Decidability of the conjugacy problem inG1,2 is not new, it was shown in [3]4 and de-
cidability outside a so-called “black hole” follows already from [4]. Our work improves
Beese’s work leading to a polynomial time algorithm outsidea proper subset of the
“black hole” (and decidability everywhere). Thus, our result underlines that in special
cases likeG1,2 much better results than stated in [4] are possible. Let us also note that
there are undecidable problems (hence no finite average casecomplexity is defined),
like the halting problem for certain encodings of Turing machines, which have generi-
cally linear time partial solutions. However, many of theseexamples depend on encod-
ings and special purpose constructions. In our case we consider a natural problem where
the average case complexity is defined, but the only known algorithm to solve it runs in
non-elementary time on the average. Nevertheless, there isa polynomialp (roughly of
degree4) such that the probability that the same algorithm requiresmore thanp(n) steps
on random inputs converges exponentially fast to zero. The main technical difficulty in
establishing a strongly generic polynomial time complexity is to show that a random
walk of lengthn in the Cayley graph ofG1,2 ends with probability less than(1 − ε)n

in the subgroupBS1,2 for someε > 0. Random walks in infinite graphs are widely
studied in various areas, see e.g. [24] or the textbook [25]. In Section5 we prove a gen-
eral statement about HNN extension of the formG =

〈
H, b | bab−1 = ϕ(a), a ∈ A

〉

with a finitely generated base groupH and∆ a finite symmetric set of generators for
G. We show that the complement ofH (inside∆∗) is strongly generic if and only if
A 6= H 6= B. With other words, the Schreier graphΓ (G,H,∆) is non-amenable if
and only ifA 6= H 6= B. (For a definition of amenability and its equivalent charac-
terizations see e.g. [5,14].) This applies toG1,2 because it is an HNN extension where
A 6= H 6= B. However, in the special case ofG1,2 we can also apply a technique
quite different from the general approach. In Section4.1we define a “pairing” between
random walks in the Cayley graph and Dyck words. We exhibit anε > 0 such that for
each Dyck wordw of length2n the probability that a pairing withw evaluates to1 is
bounded by(1/4− ε)n. The result follows since there are at most4n Dyck words.

Notation and preliminaries

Words. An alphabetis a (finite) setΣ; an elementa ∈ Σ is called aletter. The set
Σn forms the set ofwords of lengthn. The length ofw ∈ Σn is denoted by|w|.
The set of all words is denoted byΣ∗. It is the free monoid overΣ. Let a ∈ Σ be a
letter andw ∈ Σ∗. The number of occurrences ofa in w is denoted by|w|a. Clearly,
|w| =∑a∈Σ |w|a. If we can writew = uxv, then we callx a factor of w; and we say
thatw = uxv is afactorization.
Functions. We use standardO-notation for functions fromN to non-negative reals
R≥0. (This includes of courseΩ- andΘ-notation.) Thetower functionτ : N → N

is defined byτ (0) = 0 andτ (i + 1) = 2τ(i) for i ≥ 0. It is primitive recursive. We

4 It is unknown whether the conjugacy problem in one-relator groups is decidable, in general.
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say that a functionf : N → R≥0 is elementary, if the growth off can be bounded
by a fixed number of exponentials. It is callednon-elementaryif it is not elementary,
but f(n) ∈ τ (O(n)). Thus, in our paper non-elementary means a lower and an upper
bound.
Circuit complexity. We deal with various complexity measures. On the lowest level
we are interested in problems which can be decided by (uniform) TC0-circuits. These
are circuits of polynomial size with constant depth where weallow Boolean gates and
majority gates, which evaluate to1 if and only if the majority of inputs is1. For a precise
definition and uniformity conditions we refer to the textbook [23]. TC0 circuits can be
simulated byNC1 circuits, i.e., circuits of logarithmic depth where only Boolean gates
of constant fan-in are allowed. Thus,TC

0 is a very low parallel complexity class. Still
it is amazingly powerful with respect to arithmetic. In particular, we shall use Hesse’s
result that division of binary integers can be computed by a uniform family of TC0-
circuits [12,13].
Time complexity.A uniform family ofTC0-circuits computes a polynomial time com-
putable function. We use a standard notion for worst-case and for average case com-
plexity and random access machines (RAMs) as machine model.An algorithmA com-
putes a function between domainsD andD′. In our applicationsD comes always
with a natural partitionD =

⋃{
D(n)

∣∣ n ∈ N
}

where eachD(n) is finite. The time
complexity tA is defined bytA(n) = max

{
tA(w)

∣∣ w ∈ D(n)
}

. Assuming a uni-
form distribution among elements inD(n), the average case complexity is defined by
avA(n) =

1
|D(n)|

∑
w∈D(n) tA(w).

Generic case complexity.For many practical applications the “generic-case behavior”
of an algorithm is more important than its average-case or worst-case behavior. We refer
to [14,15] where the foundations of this theory were developed and to [19] for appli-
cations in cryptography. The notion ofgeneric complexityrefers to partial algorithms
which are defined on a (strongly) generic setI ⊆ D. Thus, they may refuse to give an
answer outsideI, but if they give an answer, the answer must always be correct. In our
context it is enough to deal with totally defined algorithms and strongly generic sets.
Thus, the answer is always computed and always correct, but the runtime is measured by
a worst-case behavior over a strongly generic setI ⊆ D. Here a setI is calledstrongly
generic, if there exists anε > 0 such that

∣∣D(n) \ I
∣∣ /
∣∣D(n)

∣∣ ≤ 2−εn for almost all
n ∈ N. This means the probability to find a random string outsideI converges exponen-
tially fast to zero. Thus, if an algorithmA runs in polynomial time on a strongly generic
set, then, for practical purposes,A behaves as a polynomial time worst-case algorithm.
This is true although the average time complexity ofA can be arbitrarily high.
Group theory. We use standard notation and facts from group theory as foundin the
classical text book [16]. GroupsG are generated by some subsetS ⊆ G. We letS =
S−1 and we viewS ∪ S as an alphabet with involution; its elements are calledletters.
We havea = a for letters and also for words by lettinga1 · · ·an = an · · · a1 where
ai ∈ S ∪ S are letters. Thus, ifg ∈ G is given by a wordw, thenw = g−1 in the group
G. For a wordw we denote by|w| its length. We say thatw is reducedif there is no
factoraa for any letter. It is calledcyclically reducedif ww is reduced. For words (or
group elements) we writex ∼G y to denote conjugacy, i.e.,x ∼G y if and only if there
exists somez ∈ G such thatzxz = y in G. For the decision problem “conjugacy inG”
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we assume that the input consists of cyclically reduced wordsx andy if not explicitly
stated otherwise. We apply the standard (so called Magnus break-down) procedure for
solving the word problem in HNN extensions. Our calculations are fully explicit and
accessible with basic knowledge in combinatorial group theory
Glossary.TC0 circuit class.x ∼G y conjugacy in groups.(Γ, δ) power circuits.ε(P ),
ε(M) evaluation of nodes and markings.τ(n) tower function. Baumslag-Solitar group:
BS1,2 =

〈
a, t | tat−1 = a2

〉
. Baumslag group:G1,2 =

〈
a, b | bab−1a = a2ba−1b−1

〉
.

Subgroup relationsA = 〈a〉, T = 〈t〉 ≤ BS1,2 = Z[1/2]⋊ Z = H ≤ G1,2. Standard
symmetric set of generators forG1,2 isΣ =

{
a, a, b, b

}∗
andz = z−1 in groups.

1 Power circuits

In binary a number is represented as a summ =
∑k

i=0 bi2
i with bi ∈ {0, 1}. Allowing

bi ∈ {−1, 0, 1} we obtain a “compact representation” of integers, which mayrequire
less non-zerobis than the normal representation. The notion of power circuit is due
to [21]. It generalizes compact representations and goes far beyond since it allows a
compact representation of tower functions. Formally: apower circuitof sizen is given
by a pair(Γ, δ). Here,Γ is a set ofn vertices andδ is a mappingδ : Γ × Γ →
{−1, 0,+1}. The support ofδ is the subset∆ ⊆ Γ × Γ with (P,Q) ∈ ∆ ⇐⇒
δ(P,Q) 6= 0. Thus,(Γ,∆) is a directed graph. Throughout we require that(Γ,∆) is
acyclic. In particular,δ(P, P ) = 0 for all verticesP . A markingis a mappingM : Γ →
{−1, 0,+1}. We can also think of a marking as a subset ofΓ where each element in
M has a sign (+ or −). If M(P ) = 0 for all P ∈ Γ then we simply writeM = ∅.
Each nodeP ∈ Γ is associated in a natural way with a successor markingΛP : Γ →
{−1, 0,+1} , Q 7→ δ(P,Q), consisting of the target nodes of outgoing arcs fromP .
We define theevaluationε(P ) of a node (ε(M) of a marking resp.) bottom-up in the
directed acyclic graph by induction:

ε(∅) = 0,

ε(P ) = 2ε(ΛP ) for a nodeP ,

ε(M) =
∑

P

M(P )ε(P ) for a markingM.

Note that leaves evaluate to1, the evaluation of a marking is a real number, and the eval-
uation of a nodeP is a positive real number. Thus,ε(P ) andε(M) are well-defined.
We haveε(ΛP ) = log2(ε(P )), thus the successor marking plays the role of a loga-
rithm. We are interested only in power circuits where all markings evaluate to integers;
equivalently all nodes evaluate to some positive natural number in2N.

Thepower circuit-representationof an integer sequencem1, . . . ,mk is given by a
tuple (Γ, δ;M1, . . . ,Mk) where(Γ, δ) is a power circuit andM1, . . . ,Mk are mark-
ings such thatε(Mi) = mi. (Hence, a single power circuit can store several different
numbers; a fact which has been crucial in the proof of Proposition 9, see [8].)

Example 1.We can represent every integer in the range[−n, n] as the evaluation of
some marking in a power circuit with node set{P0,n, . . . , Pℓ} such thatε(Pi) = 2i for
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0 ≤ i ≤ ℓ andℓ = ⌊log2 n⌋. Thus, we can convert the binary notation of an integern
into a power circuit withO(log |n|) vertices andO((log |n|) log log |n|) arcs.

Example 2.A power circuit of sizen can realizeτ (n) since a chain ofn nodes repre-
sentsτ (n) as the evaluation of the last node.

Proposition 3 ([20,8]). The following operations can be performed in quadratic time.
Input a power circuit(Γ, δ) of sizen and two markingsM1 andM2. Decide whether
(Γ, δ) is indeed a power circuit, i.e., decide whether all markingsevaluate to integers.
If “yes”:

– Decide whetherε(M1) ≤ ε(M2).
– Compute a new power circuit with markingsM , X andU such that

1. ε(M) = ε(M1)± ε(M2).
2. ε(M) = 2ε(M1) · ε(M2).
3. ε(M1) = 2ε(X) · ε(U) and eitherU = ∅ or ε(U) is odd.

Let us mention that the complexity of the division problem inpower circuits is open.
Here, the division problem is as follows. Given a power circuit of sizen and two mark-
ingsM1 andM2, decide whetherε(M1) | ε(M2), i.e.,ε(M1) dividesε(M2). We sus-
pect that the division problem in power circuits is extremely difficult. The only known
general algorithm transformsε(M1) andε(M2) first in binary and solves division after
that. So, the first part involves a non-elementary explosion.

2 Conjugacy in the Baumslag-Solitar groupBS1,2

The solution of the conjugacy problem in the Baumslag groupG1,2 relies on the sim-
pler solution for the Baumslag-Solitar groupBS1,2. The aim of this section is to show
that the conjugacy problem inBS1,2 is TC

0-complete. The groupBS1,2 is given by
the presentation

〈
a, t | tat−1 = a2

〉
. We haveta = a2t andat−1 = t−1a2. This al-

lows to represent all group elements by words of the formt−partq with p, q ∈ N

andr ∈ Z. However, forq ≥ 0, transformingtqar into this form leads toastq with
s = 2qr, so the wordastq is exponentially longer than the wordtqar. We denote by
Z[1/2] = {p/2q ∈ Q | p, q ∈ Z} the ring ofdyadic fractions. Multiplication by2 is an
automorphism of the underlying additive group and therefore we can define the semi-
direct productZ[1/2] ⋊ Z as follows. Elements are pairs(r,m) ∈ Z[1/2] × Z. The
multiplication inZ[1/2]⋊ Z is defined by

(r,m) · (s, q) = (r + 2ms,m+ q).

Inverses can be computed by the formula(r,m)−1 = (−r · 2−m,−m). It is straight-
forward to show thata 7→ (1, 0) and t 7→ (0, 1) defines an isomorphism between
BS1,2 andZ[1/2] ⋊ Z. In the following we abbreviateBS1,2 (= Z[1/2] ⋊ Z) by H .
There are several options to represent a group elementg ∈ H . In a unary representa-
tion we write g as a word over the alphabet with involution

{
a, a, t, t

}
. Another way

is to write g = (r,m) with r ∈ Z[1/2] andm ∈ Z. In the following we use both
notations interchangeably. Thebinary representationof (r,m) consists ofr written in
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binary (as floating point number) andm in unary. Let us write(r,m) with r = 2ks
andk, s,m ∈ Z. We then have(2ks,m) = (0, k) · (s,m − k) and the corresponding
triple [k, s,m − k] ∈ Z3 is called thetriple-representationof (r,m); it is not unique.
Thepower circuit representationof g = [k, s,m − k] is given by a power circuit and
markingsK, S, L such thatε(K) = k, ε(S) = s, andε(L) = m − k. Note that
if g ∈

{
a, a, t, t

}n
satisfiesg = (r,m) ∈ H , then|r| ≤ 2n and |m| ≤ n. Thus, a

transformation from unary to binary notation is on the safe side.

Proposition 4. Let (r1,m1), . . . , (rn,mn) ∈ Z[1/2] ⋊ Z given in binary representa-
tion for all i. Then there is a uniform construction of aTC0-circuit which calculates
(r,m) = (r1,m1) · · · (rn,mn) in Z[1/2]⋊ Z.

Proof. The statements concerning computations inTC
0 are standard and can be found

e.g. in the textbook [23]. Let N = max {mi, ⌊|log2 ri|⌋+ 1, n | 1 ≤ i ≤ n}. Since
themi are written in unary, we may assume for simplicity that all|mi| ≤ 1 (hence,
requiring2 bits) and allri are written in binary using exactly2N bits (N bits for the
mantissa andN for the exponent). Thus, we may assume that the input is a bit-string of
length exactly2(N2 + N). We havem =

∑n
i=1 mi. By induction, using the equality

(r,m)(s, q) = (r+s·2m,m+q), we seer =
∑n

i=1 ri ·2ki whereki =
∑k−1

i=1 mi. Since
the numberski are bounded byN , they can be calculated by the iterated addition of the
unary numbersmj for j < i, which is inTC0. In particular,m can be calculated by a
TC

0-circuit. The bit shiftri 7→ ri · 2ki can be computed by aTC0-circuit. It remains to
calculate the iterated addition of binary numbers which is possible inTC0. ⊓⊔

The next proof uses a deep result of Hesse: integer division is in uniformTC
0.

Proposition 5. Let f = (r,m), g = (s, q) ∈ Z[1/2]⋊ Z be given in binary represen-
tation. Then there is a uniform construction of aTC0-circuit which decidesf ∼H g.

Proof. Let (r,m) ∼H (s, q), i.e., there arek ∈ Z, x ∈ Z[1/2] with (x, k)(r,m) =
(s, q)(x, k). In particular,(r,m) ∼H (s, q) if and only if m = q and there arek ∈ Z,
x ∈ Z[1/2] such that

s = r · 2k − x · (2m − 1). (1)

We have(r,m) ∼H (s,m) if and only if (−r,−m) ∼H (−s,−m) since(−p,−m) ∼H

(−p2−m,−m) = (p,m)−1 for all p ∈ Z[1/2]. Therefore, without restrictionm ∈ N.
Since a conjugation withtk maps(r,m) to (2kr,m), we may assume thatr, s ∈ Z and
m ∈ N. Form = 0 this means(r, 0) ∼H (s, 0) if and only if there is somek ∈ Z such
thats = r · 2k. This can be decided inTC0. Form = 1 we can choosex = r − s and
the answer is “yes”. Form ≥ 2 we can multiply (1) by 2ℓ such thatx · 2ℓ ∈ Z. We
obtain2ℓ · (r · 2k − s) = 2ℓx · (2m − 1), i.e.,2ℓ · (r · 2k − s) ≡ 0 mod (2m − 1). The
number2 is invertible modulo2m − 1 and its order ism. Hence, actually form ≥ 1:

(r,m) ∼H (s,m) ⇐⇒ ∃k ∈ N : 0 ≤ k < m ∧ r · 2k − s ≡ 0 mod (2m − 1). (2)

It can be checked whether such ak exists using Hesse’s result for division [12,13]. ⊓⊔

Theorem 6. The word problem as well as the conjugacy problem inBS1,2 is TC
0-

complete.
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Proof. By Proposition4 and Proposition5, the conjugacy problem can be solved in
TC

0. The word problem is a special instance of the conjugacy problem and the word
problem inZ is TC

0-hard in unary notation. This follows because theTC
0-hard prob-

lemMAJORITY(see [23]) reduces uniformly to the unary word problem inZ. ⊓⊔
Remark 7.Let us highlight that integer division can be reduced to the conjugacy prob-
lem inBS1,2. Form ≥ 1 we obtain as a special case of (2) and a well-known fact from
elementary number theory

(0,m) ∼H (2s − 1,m) ⇐⇒ 2m − 1 | 2s − 1 ⇐⇒ m | s. (3)

If we allow a power circuit representation for integers, then this reduction from division
to conjugacy can be computed in polynomial time. Hence, no elementary algorithm
is known to solve the conjugacy problem inBS1,2 in power circuit representation,
whereas the word problem remains solvable in cubic time by [8].

3 Conjugacy in the Baumslag groupG1,2

The Baumslag groupG1,2 is an HNN extension of the Baumslag-Solitar groupBS1,2.
We make this explicit. We letBS1,2 be our base group, generated bya andt. Again,
BS1,2 is abbreviated asH . The groupH contains infinite cyclic subgroupsA = 〈a〉
andT = 〈t〉 with A ∩ T = {1}. Let b be a fresh letter which is added as a new
generator together with the relationbab−1 = t. This defines the Baumslag groupG1,2.
It is generated bya, t, b with defining relationstat−1 = a2 andbab−1 = t. However,
the generatort is now redundant and we obtainG1,2 as a group generated bya, b
with a single defining relationbab−1a = a2bab−1. We represent elements ofG1,2

by β-factorizations. Aβ-factorizationis written as a wordz = γ0β1γ1 . . . βkγk with
βi ∈

{
b, b
}

andγi ∈
{
a, a, t, t

}∗
. The numberk is called theβ-lengthand is denoted as

|z|β (i.e.,|z|β = |z|b+|z|b). A transpositionof aβ-factorizationz = γ0β1γ1 . . . βkγk is
given asz′ = βiγi . . . βkγkγ0β1γ1 . . . βi−1γi−1 for some1 ≤ i ≤ k. Clearly,z ∼G1,2

z′ in this case. Throughout we identify a powerc−ℓ with cℓ for lettersc andℓ ∈ N.
Britton reductions. A Britton reductionconsiders some factorβγβ with γ ∈

{
a, a, t, t

}∗
.

There are two cases. First, ifβ = b andγ = aℓ in H for someℓ ∈ Z then the factorbγb
is replaced bytℓ. Second, ifβ = b andγ = tℓ in H for someℓ ∈ Z then the factorbγb
is replaced byaℓ. At most |z|β Britton reduction are possible on a wordz. Be aware!
There can be a non-elementary blow-up in the exponents, see Example8. If no Britton
reduction is possible, then the wordx is calledBritton-reduced. It is calledcyclically
Britton-reducedif xx is Britton-reduced. Britton reductions are effective because we
can check whetherγ = aℓ (resp.γ = tℓ) in H . Thus, on inputx ∈

{
a, a, t, t, b, b

}∗
we

can effectively calculate a Britton-reduced wordx̂ with x = x̂ in G1,2. The following
assertions are standard facts for HNN extensions, see [16]:

1. If x is Britton-reduced thenx ∈ H if and only if |x|β = 0.
2. If x is Britton-reduced and|x|β = 0 thenx = 1 in G1,2 if and only if x = 1 in H .
3. Letβ1γ1 . . . βkγk andβ′

1γ
′
1 . . . β

′
kγ

′
k beβ-factorizations of Britton-reduced words

x andy such thatk ≥ 2 andx = y inG1,2. Then we havek = k′ and(β1, . . . , βk) =
(β′

1, . . . , β
′
k′). Moreover,γ′

1 ∈ γ1T if β2 = b andγ′
1 ∈ γ1A if β2 = b.
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Example 8.Define wordsw0 = t andwn+1 = b wn awn b for n ≥ 0. Then we have
|wn| = 2n+2 − 3 butwn = tτ(n) in G1,2.

The power circuit-representationof a β-factorizationγ0β1γ1 . . . βkγk is the se-
quence(β1, . . . , βk) and a power circuit(Γ, δ) together with a sequence of markings
K0, S0, L0, . . . ,Kk, Sk, Lk such that[ε(Ki), ε(Si), ε(Li)] = [ki, si, ℓi] is the triple
representation ofγi ∈ H for 1 ≤ i ≤ k. It is known that the word problem ofG1,2 is
decidable in cubic time. Actually a more precise statement holds.

Proposition 9 ([20,8]). There is a cubic time algorithm which computes on input of a
power circuit representation ofx = γ0β1γ1 . . . βkγk a power circuit representation of
a Britton-reduced word (resp. cyclically Britton-reducedword) x̂ such thatx = x̂ in
G1,2 (resp. x ∼G1,2 x̂). Moreover, the size for the power circuit representation of x̂ is
linear in the size of the power circuit representation ofx.

Remark 10.A polynomial time algorithm for the result in Proposition9 has been given
first in [20], it has been estimated byO(n7). This was lowered in [8] to cubic time.

Theorem 11. The following computation can be performed in timeO(n4). Input: words
x, y ∈

{
a, a, b, b

}∗
. Decide whether|x̂|β > 0 for a cyclically Britton-reduced form̂x

of x. If “yes”, decidex ∼G1,2 y and, in the positive case, compute a power circuit
representation of somez such thatzxz = y in G1,2.

Proof. Due to Proposition9, we may assume that input wordsx andy are given as
cyclically Britton-reduced words. In particular,x̂ = x and|x̂|β = n > 0. Let us write
x = γ0b

ε1γ1 . . . b
εnγn as itsβ-factorization whereεi = ±1. If all εi = +1 then we

replacex andy byx andy. Hence, without restriction there exists someεi = −1. After
a possible transposition we may assume thatx = bε1γ1 · · · bεnγn with ε1 = −1. Since
y is cyclically Britton-reduced, too, Collins’ Lemma ([16, Thm. IV.2.5]) tells us several
things: Ifx ∼G1,2 y then|y|β = n and after some transposition theβ-factorization of
y can be written asbε1γ′

1 · · · bεnγ′
n. Moreover, still by Collins’ Lemma, we now have

x ∼G1,2 y ⇐⇒ ∃k ∈ Z : y = akxa−k in G1,2. The key is thatk is unique and that
we find an efficient way to calculate it.5

Casen = 1. We havex = b(r,m) andy = b(s, q) for some(r,m), (s, q) ∈ Z[1/2]⋊Z.
Now, akx = yak in G1,2 if and only if (0, k)(r,m) = (s, q)(k, 0). This forcesk =
q −m. Hence

x ∼G1,2 y ⇐⇒ 2q−mr = s+ 2q(q −m) for n = 1. (4)

Casen ≥ 2 andε2 = +1. Thenx = b(r,m)bγ2 · · · bεnγn andy = b(s, q)bγ′
2 · · · bεnγ′

n.
We haver 6= 0 6= s sincex andy are Britton-reduced. For everyk ∈ Z and every
Britton-reducedβ-factorizationbγ̃1b . . . bεn γ̃n for akxak we havẽγ1 ∈ tk(r,m)T , and
hencẽγ1 = (2kr, p) for somep ∈ Z. We conclude that there is a uniquek ∈ Z such
that akxak = b (2kr, p)b · · · bεn γ̃n ∈ G1,2, p ∈ Z, and2kr is an odd integer. This
means we may assume from the very beginning thatr ands are odd integers. Under
this assumption, ifakxa−k = y in G1,2 then necessarilyk = 0 and hencex = y in
G1,2. We obtain the following algorithm to decidex ∼G1,2 y.

5 Beese calculates in [3] this valuek and computes certain normal forms which are checked for
equivalence. This leads to an exponential time algorithm.
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– For γ1 = (r,m) andγ′
1 = (s, q) calculate uniquek, ℓ ∈ Z such that2kr and2ℓs

are odd integers.
– Decide whetherakxak = aℓyaℓ ∈ G1,2. If “yes” then x ∼G1,2 y otherwise
x 6∼G1,2 y.

Casen ≥ 2 andε2 = −1. Thenx = b(r,m)b γ2 · · · bεnγn andy = b(s, q)b γ′
2 · · · bεnγ′

n.
For everyk ∈ Z we can writeakxak in some Britton-reduced form which looks like
b γ̃1b · · · bεn γ̃n. Now, γ̃1 ∈ tk(r,m)A. Thus, there is a uniquek ∈ Z (necessarily
k = −m) such that̃γ1 = (p, 0) for somep ∈ Z[1/2]. Using the same arguments as
above, we obtain the following algorithm. Forγ1 = (r,m) andγ′

1 = (s, q) decide
whethera−mxam = a−qyaq ∈ G1,2. If “yes” thenx ∼G1,2 y otherwisex 6∼G1,2 y.

By Proposition9, the testsakxak = y ∈ G1,2 can be performed in cubic time. All
other computations can be done in quadratic time by Proposition 4. Since all transposi-
tions of theβ-factorization fory have to be considered this yields anO(n4)-algorithm.

⊓⊔
For the remainder of the section the situation is as follows:We havex = (r,m) ∈

Z[1/2] ⋊ Z andy = (s, q) ∈ Z[1/2] ⋊ Z, both can be assumed to be in power circuit
representation. We may assumex 6= 1 6= y in G1,2. After conjugation with sometk

wherek is large enough we may assume thatr,m, s, q ∈ Z. If m = 0 then we replace
x by bxb. Hence,m 6= 0 and, by symmetry,q 6= 0, too. By (2) and “division in power
circuits”, we are able to to test whether(r,m) ∼H (0,m) and(s, q) ∼H (0, q). Assume
that one of the answers is “no”. Say,(r,m) 6∼H (0,m). Then there is noh ∈ A∪T ⊆ H
such that(r,m) ∼H h. Since thenβγ(r,m)γβ is Britton-reduced for allβ ∈

{
b, b
}

,
γ ∈

{
a, a, t, t

}∗
we obtain:

Proposition 12. Let r,m ∈ Z, m 6= 0. If (r,m) 6∼H (0,m) then

(r,m) ∼G1,2 (s, q) ⇐⇒ (r,m) ∼H (s, q).

By Proposition12, we may assume(r,m) ∼H (0,m), (s, q) ∼H (0, q), and(r,m) 6∼H

(s, q). This involves perhaps non-elementary procedures. However, it remains to decide
(0,m) ∼G1,2 (0, q), only. The last test is polynomial time again, even for powercir-
cuits.

Proposition 13. Letm, q ∈ Z. Then we have

(0,m) ∼G1,2 (0, q) ⇐⇒ (m, 0) ∼H (q, 0) ⇐⇒ ∃k ∈ Z : m = 2kq.

Proof. The assertion(m, 0) ∼H (q, 0) ⇐⇒ ∃k ∈ Z : m = 2kq is clear since
(m, 0) = am and(q, 0) = aq in H = BS1,2. Let (0,m) ∼G1,2 (0, q). We have to
show(m, 0) ∼H (q, 0) since the other direction is trivial. We have(q, 0) ∼G1,2 (0, q).
Let γ0bε1γ1 · · · bεnγn be aβ-factorization of somez with n ∈ N minimal such that
z(q, 0)z = (0,m). Sinceγ0(q, 0)γ0 = (p, 0) for somep 6= 0, we haven ≥ 1 and
ε1 = −1 because there has to occur a Britton reduction. Thus,bγ0(q, 0)γ0b = tp in
G1,2. Now, γ1(0, p)γ1 ∈ A ∪ T if and only if γ1(0, p)γ1 = (0, p). Thus, we may
assumeγ1 = 1 in H . Sincen is minimal we cannot haveε2 = +1. Thus, we must
haven = 1 and we may choosez = γb for someγ ∈ H . This meansz(q, 0)z =
bγ(q, 0)γb = (0,m) which implies(m, 0) ∼H (q, 0). ⊓⊔
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Corollary 14. The following problem is decidable in at most non-elementary time. In-
put: Power circuit representationsx, y for elements ofG1,2. Question:x ∼G1,2 y?

Corollary 15. If there is no elementary algorithm to solve the division problem in
power circuits then the conjugacy problem in the Baumslag groupG1,2 is non-elementary
in the average case even for a unary representation of group elements.

Proof. Assume that the conjugacy problem in the Baumslag groupG1,2 is elementary
on the average. We give an elementary algorithm to solve division in power circuits.
Let (Γ, δ) be a power circuit of sizen with markingsM andS such thatε(M) =
m and ε(S) = s. For each node inP ∈ Γ it is easy to construct a wordw(P ) ∈{
a, a, b, b

}∗
such thattε(P ) = w(P ) in G1,2 and|w(P )| ≤ nn. Just follow the scheme

from Example8. Hence, in time2O(n logn) we can construct wordsx andy such that
x = (0,m) andy = (2s − 1,m) in G1,2. Now by Remark7 we havem | s if and only

if x ∼G1,2 y. The number of words of length2O(n logn) is at most22
O(n log n)

. ⊓⊔

4 Generic case analysis

Let us define a preorder between functions fromN to R≥0 as follows. We letf � g if
there existk ∈ N andε > 0 such that for almost alln we have

f(n) ≤ nkg(n) + 2−εn.

Moreover, we letf ≈ g if both,f � g andg � f . We are mainly interested in functions
f ≈ 0. These functions form an ideal in the ring of functions whichare bounded by
polynomial growth. Moreover, iff ≈ 0 theng ≈ 0 for g(n) ∈ f(θ(n)). The notion
f ≈ g is therefore rather flexible and simplifies some formulae. Weconsider cyclically
reduced words overΣ = {a, a, b, b} of lengthn with uniform distribution. This yields
a functionp(n) = Pr

[
∃y : x ∼G1,2 y ∧ y ∈ H

]
. We provep(n) ≈ 0. More precisely,

we are interested in the following result.

Theorem 16. There is a strongly generic algorithm that decides in timeO(n4) on cycli-
cally reduced input wordsx, y ∈ {a, a, b, b}∗ with |xy| ∈ θ(n) whetherx ∼G1,2 y.

In the preceding section we have described the algorithm forthe conjugacy problem.
Hence, it remains to show that it runs strongly generically inO(n4). We give two proofs
of Theorem16. The first one is given in Section4.1. It uses a pairing by Dyck words.
It is a little bit tedious, but self-contained and elementary. The second proof is given
in Section5. It is based on a more general characterization which applies to all finitely
generated HNN extensions, see Theorem20. To the best of our knowledge this char-
acterization has not been stated elsewhere. The proof is notvery hard, but in order to
derive Theorem16we need additional results from the literature.

4.1 Pairing with Dyck words: First proof of Theorem 16

Proof. By Theorem11, there is an algorithm decidingx ∼G1,2 y which runs in time
O(n4) for inputs which cannot be conjugated to elements inH . Hence, we only have
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to bound the number of cyclically reduced words of lengthm ∈ θ(n) which can be
conjugated to some element inH . For simplicity of notation we assumem = n. A
reduced word inΣn can be identified with a random walk without backtracking in
the Cayley graph ofG1,2 with generatorsa andb. We encode reduced words overΣ
of lengthn in a natural way as words inΩ = Σ · {1, 2, 3}n−1. On Ω we choose
a uniform probability (e.g., if thei-th letter isb then thei + 1-st letter isa, a, or b
with equal probability1/3). Because we are interested in conjugacy, we compute the
probability under the condition thatx ∈ Ω is cyclically reduced. (Actually this does
not change the results but makes the analysis smoother.) Theprobability thatx ∈ Ω
is cyclically reduced is at least2/3 for all n. Let C ⊆ Ω be the subset of cyclically
reduced words. We showPr

[
∃y : x ∼G1,2 y ∧ y ∈ H

∣∣ x ∈ C
]
≈ 0. The question

whether there exists somey with x ∼G1,2 y is answered by calculating Britton re-
ductions for a transposition ofx. The setC is closed under transpositions and it is no
restriction to assume that|x|β ≥ 1. Therefore, we can choose the transposition that

x′ = vu wherex = uv such that the first letter ofx′ is β ∈
{
b, b
}

. There are at mostn
such transpositions. Hence,

Pr
[
∃y : x ∼G1,2 y ∧ y ∈ H

∣∣ x ∈ C
]

≈ Pr [x ∈ H | x ∈ C]

= Pr [x ∈ H ∧ x ∈ C] · Pr [x ∈ C]
−1 ≤ Pr [x ∈ H ] · Pr [x ∈ C]

−1 ≤ 3

2
Pr [x ∈ H] .

It is therefore enough to provePr [x ∈ H ] ≈ 0. We switch the probability space and
we embedΩ into the spaceΣ∗ with a measureµ0,n onΣ∗ which concentrates onΩ,
i.e.,µ0,n(Ω) = 1. Within Ω we still have a uniform distribution forµ0,n. In order to
emphasize this change of view, we writePr [· · ·] = Pr0,n [· · ·]. We are now interested
in wordsx ∈

{
b, b
}
· Σ∗ which contain exactly2m lettersβ ∈

{
b, b
}

for m ≥ 1.
(The number|x|β must be even ifx ∈ H .) Each such word can be written as aβ-
factorization of the formx = β1α1 . . . β2mα2m whereαi = aei with ei ∈ Z. This
defines a new measureµm onΣ∗ which is defined as follows. We start a random walk
without backtracking with eitherb or b with equal probability. For the next letter there
are always3 possibilities, each is chosen with probability1/3. We continue as long as
the random walk contains at most2m letters from

{
b, b
}

. This gives a corresponding
probability onΣ∗ which is concentrated on those words with|x|β = 2m. We denote the
corresponding probability byPrm [· · ·]. In order to switch fromPr0,n [· · ·] toPrm [· · ·]
we consider theblock structureB(x) of a wordx ∈

{
b, b
}
· Σ∗. We defineB(x) as

the tuple(e1, e′1, . . . , ek, e
′
k) for x = βe1

1 α
e′1
1 · · ·βek

k α
e′k
k whereei, e′i > 0, with the

exception that possiblye′k = 0, βi ∈
{
b, b
}

, andαi ∈ {a, a}.

Let Ẽk,m =
{
(e1, e

′
1, . . . , ek, e

′
k)
∣∣∣
∑k

i=1 ei = 2m ∧∑k
i=1 e

′
i = n− 2m

}
. For each

ẽ ∈ Ẽk,m we obtainPr0,n [B(x) = ẽ ] ∈ θ(22k3−n) andPrm [B(x) = ẽ ] ∈ θ(22k3−n).

In particular, we have
∑⌊n/4⌋

m=0

∑
k

∑
ẽ∈Ẽk,m

Pr0,n [B(x) = ẽ ] ≤ n2n3−n ≈ 0 because

k ≤ 2m for ẽ ∈ Ẽk,m. Moreover,Pr0 [x ∈ H | B(x) = ẽ ] = Prm [x ∈ H | B(x) = ẽ ].
Indeed, both values are equal to2−2k for e′k > 0 and equal to21−2k for e′k = 0. This
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yields:

Pr0,n [x ∈ H ] ≈
n∑

m=⌈n/4⌉

∑

k

∑

ẽ∈Ẽk,m

Pr0,n [x ∈ H ∧B(x) = ẽ ]

≈
n∑

m=⌈n/4⌉

∑

k

∑

ẽ∈Ẽk,m

Prm [x ∈ H ∧B(x) = ẽ ]

=
n∑

m=⌈n/4⌉

Prm [x ∈ H ∧ |x| = n] ≤
n∑

m=⌈n/4⌉

Prm [x ∈ H ]

≈ Pr⌈n/4⌉ [x ∈ H ] ≈ 0 by Lemma17.

Hence, the proof of Theorem16 is reduced to show Lemma17.
From now on we work with the measureµn and the corresponding probability

Prn [· · ·] for n ≥ 1. Thus, we may assume that our probability space contains only
those wordsx which haveβ-factorizations of the formx = β1α1 . . . β2nα2n with
αi ∈ aZ. The following result is the main lemma for the analysis of the generic case.

Lemma 17. We havePrn [x ∈ H ] ≤ (8/9)n.

The proof of Lemma17 is based on a “pairing” with Dyck words: Define a new
alphabetB = {⌊, ⌉} where⌊ is an opening left-bracket and⌉ is the corresponding
closing right-bracket. The set of Dyck wordsDn is the set of words inB2n with correct
bracketing. The number of Dyck words is well-understood, wehave|Dn| = 1

n+1

(
2n
n

)
≤

4n. Thus,|Dn| = Cn, whereCn is then-th Catalan number. The connection between
Dyck words and Britton reductions is as follows. Britton reductions are defined for
words

{
a, a, t, t, b, b

}∗
. Consider aβ-factorization of the formx = β1α1 . . . β2nα2n

with αi ∈ aZ. If x ∈ H , then there exists a sequence of Britton reductions which
transformsx into x̂ ∈

{
a, a, t, t

}∗
. We call such a sequence asuccessful Britton re-

duction. Every successful Britton reduction defines in a natural waya Dyck word by
assigning an opening bracket to positioni and a closing bracket to positionj if βiuβj

is replaced by a Britton reduction. Moreover, Britton reductions are confluent onH .
In particular, this means that forx ∈ H we can start a successful Britton reduction by
replacing all factorsβia

eβi+1 with βi = b = βi+1 ande ∈ Z by te where1 ≤ i < 2n.
Thus, if such a successful Britton reduction is described byd, then we may assume that
didi+1 = ⌊⌉ wheneverβia

eβi+1 = baeb. Vice versa, ifdidi+1 = ⌊⌉, then we must have
βi = b = βi+1, otherwised is no description of any Britton reduction forx at all. Note
that for eachi with di = ⌊ there is exactly onej which matchesdi. The characterization
of j is thatdi+1 · · · dj−1 is a Dyck word anddj = ⌉. If d describes a Britton reduction
for x and (i, j) is a matching pair ford thenβiβj = β β for someβ ∈

{
b, b
}

. We
therefore say thatx andd matchif the following two conditions are satisfied:

1. For all1 ≤ i < 2n we havedidi+1 = ⌊⌉ ⇐⇒ βiβi+1 = b b.
2. For all1 ≤ i < j ≤ 2n wheredidj = ⌊⌉ is a matching pair we haveβiβj = β β.

We define〈x , d〉β = 1 if x andd match and〈x , d〉β = 0 otherwise. We refine this
pairing by defining〈x , d〉 = 1 if 〈x , d〉β = 1 andd describes a successful Britton
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reduction provingx ∈ H . Otherwise we let〈x , d〉 = 0. Clearly,

Prn [x ∈ H] ≤
∑

d∈Dn

Prn [〈x , d〉 = 1] . (5)

Since|Dn| ≤ 4n, the proof of Lemma17 reduces to show that for everyd ∈ Dn we
have

Prn [〈x , d〉 = 1] ≤ (2/9)n. (6)

Lemma 18. Let d ∈ Dn be a Dyck word andk = |{i | didi+1 = ⌊⌉}|. Then we have
Prn [〈x , d〉β = 1] ≤ (2/3)n−k(2/9)k.

Proof. Letx be given as itsβ-factorizationx = β1α1, . . . , β2nα2n. In order to compute
〈x , d〉β , we scand = d1 · · · d2n from left to right withdi ∈ {⌊⌉}. We stop at eachj
wheredj = ⌉. Let i be the corresponding index such thatdidj is a matching pair in the
Dyck wordd. We havei < j. For fixedj, the probability thatβj = βi depends onβj−1,
only. We havePrn

[
βj = βi

∣∣ βj−1 = βi

]
= 1/3 andPrn

[
βj = βi

∣∣ βj−1 = βi

]
=

2/3. Thus,Prn
[
βj = βi

]
≤ 2/3. Moreover, forj = i+ 1 we obtainPrn

[
βj = βi

]
=

1/3. Now,Prn [〈x , d〉β = 1] implies in addition that forj = i+1 we must haveβi = b.
In that case we calculate

Prn
[
βi = b ∧ βi+1 = b

]
= Prn

[
βi+1 = b

∣∣ βi = b
]
Prn [βi = b] ≤ (1/3) · (2/3).

The result follows. ⊓⊔

Lemma 19. Letd ∈ Dn be a Dyck word andk = |{i | didi+1 = ⌊⌉}|. Then we have

Prk [〈x , d〉 = 1 | 〈x , d〉β = 1] ≤ (5/16)n−k.

Proof. For real valued random variablesX we let‖X‖ =
√∑

k∈Z
Pr [X = k]

2. Let
us consider first an integer valued random variableX which is given by some word of
the formuβaXβ′v. The distributionPr [X = k] depends onβ, β′, only. If β = β′ then

Pr [X = k] = 3−|k|

2 for k ∈ Z. If β 6= β′ thenPr [X = 0] = 0 andPr [X = k] = 3−|k|

for k 6= 0. Thus, ifβ = β′ then‖X‖2 = 5/16; and ifβ = β′ then‖X‖2 = 1/4. Hence:

‖X‖2 ≤ 5/16. (7)

Next, consider a word of the formuβaXβ′wβ′′aY βv with β, β′, β′′ ∈
{
b, b
}

under
the assumption thatβ′wβ′′ = (r,m) in G1,2 where(r,m) ∈ Z[1/2] ⋊ Z = H . The
random variablesX andY are independent and define another random variableZ (with
values inZ[1/2]) by the equation(X, 0) · (r,m) · (Y, 0) = (Z,m) in BS1,2, i.e.,Z =
X + r + 2mY . Hence, fork ∈ Z we obtain

Pr [Z = k] =
∑

i∈Z

Pr [X = i] Pr
[
Y = 2−m(k − r − i)

]
. (8)

Note thatPr [Y = 2−m(k − r − i)] = 0 unless2−m(k − r − i) ∈ Z. The numbers
m, k, r ∈ Z are fixed and2−m(k − r − i) = 2−m(k − r − j) implies i = j.
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Thus, we can define a new random variableY ′ with the distributionPr [Y ′ = i] =
Pr [Y = 2−m(k − r − i)]. By (8) and Cauchy-Schwarz inequality

Pr [Z = k] =
∑

i∈Z

Pr [X = i] Pr [Y ′ = i] ≤ ‖X‖ ‖Y ′‖ .

Since‖Y ′‖ ≤ ‖Y ‖, we obtainPr [Z = k] ≤ ‖X‖ ‖Y ‖. Finally, by (7)

Pr [Z = k] ≤ 5/16. (9)

Now, letd = d1 · · · d2n with di ∈ B be a Dyck word and consider indicesi < j−1
such that(i, j) is a matching pair. (This meansdidj = ⌊⌉ anddi+1 · · · dj−1 is a non-
empty Dyck word.) Letn′ = j−i+1

2 andd′ = di+1 · · · dj−1. Next, we claim that

Prn′

[
〈x , did′dj〉 = 1

∣∣ 〈y , d′〉 = 1 ∧ x = byb
]
≤ 5/16. (10)

Note that (10) refers to the measureµn′ and thus,x runs over those reduced words
in Σ∗ with |x|β = 2n′. In order to see this inequality, consider a wordbyb such that

〈y , d′〉 = 1. The wordy must contain two positions where letters from
{
b, b
}

appear
becausej > i + 1. Thus, we can writey = baXβwβ′aY b such thatβwβ′ = (r,m) in
G1,2; and we can readX andY as integer valued random variables as before. For the
derived random variableZ defined byZ = X+r+2mY we obtainPr [Z = 0] ≤ 5/16

by (9). ButPr [Z = 0] is equal toPrn′

[
〈βyβ̃ , did

′dj〉 = 1
∣∣∣ 〈y , d′〉 = 1 ∧ ββ̃ = bb

]
.

Hence, the claim.
The other situation considers words of the formx = byb. Again, we want to show

Prn′

[
〈x , did′dj〉 = 1

∣∣ 〈y , d′〉 = 1 ∧ x = byb
]
≤ 5/16. (11)

This is a more complicated situation and we need a case distinction about the structure
of d′ = di+1 · · · dj−1. We letk denote the index which matchesi + 1 andℓ matches
the indexj − 1. For〈byb , did′dj〉β = 1, we can writebyb = baeβuβy′′b. (Throughout
we letβ ∈

{
b, b
}

andu, v, w, y ∈ Σ∗). But actually more is true. Assumeβ = b then
indexi must match indexi+1, but here we havei+1 < j, a contradiction. Hence, we
concludeβ = b. By symmetry, it follows that we can writebyb = baebwbafb.
Casek > i + 2. In this case we consider wordsbyb which can be written asbyb =
baebaXβuβ′aY bvb such that〈baXβuβ′aY b , di+1 · · · dk〉 = 1. This impliesβuβ′ =
(r, 0) ∈ Z[1/2] ⋊ Z = H andv = (s, q) ∈ H . Here,X andY are random variables
as above. In this setting,〈byb , didj〉 = 1 forcesZ = 0 whereZ = X + r + Y − q.
Inequality (9) yieldsPr [Z = 0] ≤ 5/16. This shows (11) in the casek > i+ 2.
Caseℓ < j − 2. Symmetric to the precedent case.
Casek = i + 2 and ℓ = j − 2. We claim that this impliesk < ℓ. Indeed, assume
ℓ ≤ k then we must havei+ 1 = ℓ and thereforei+ 1 = j − 2. Thus,d′ = di+1di+2.
But then〈byb , di · · · di+3〉 = 1 implies byb = baebambafb with m 6= 0, i.e., y =
aetmaf ∈ H with m 6= 0. A contradiction because form 6= 0 we havebyb /∈ H
and d is not successful. Thus,i < k < ℓ < j. Now, 〈byb , did′dj〉 = 1 implies
byb = baebaXb u baY bafb. Again,X andY are random variables as above. Letu =
(r,m) ∈ Z[1/2] ⋊ Z = H . We havebaXb = tX and baY b = tY in G1,2. Thus,
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Fig. 1. Portion of reduced wordsx ∈ H with |x|
β
= 2n, sampling11 · 109 words.

〈byb , did′dj〉 = 1 impliesZ +m = 0 whereZ = X + Y . With the same arguments
as in (9) we derivePr [Z = −m] ≤ 5/16. This shows (11) in the final casek = i + 2
andℓ = j − 2, too.

Now, Lemma19 follows from (10) and (11) sincen− k matching pairs(i, j) exist
in d with i+ 1 < j. ⊓⊔

Lemma18and Lemma19enable us to calculatePrn [〈x , d〉 = 1] as follows:

Prn [〈x , d〉 = 1] = Prk [〈x , d〉 = 1 | 〈x , d〉β = 1] · Prn [〈x , d〉β = 1]

≤ (5/16)n−k · (2/3)n−k(2/9)k ≤ (2/9)n.

This shows (6) and therefore Lemma17which in turn implies Theorem16. ⊓⊔

4.2 Computer Experiments

We have conducted computer experiments with a sample of11·109 (i.e., 11 billion) ran-
dom wordsx ∈ Σ∗ with 4 ≤ |x|β = 2n ≤ 24, see Figure1. Moreover, forn = 14 our
random process did not find a singlex ∈ H . The experiments confirmPrn [x ∈ H ] ≈ 0.
The initial values seem to suggestPrn [x ∈ H] ∈ O(0.25n). This is much better than
the upper bound of Lemma17, but our proof used very rough estimations in (5) and (6),
only. Hence, a difference is no surprise.

5 Back-to-base probability in HNN extensions: Second proofof
Theorem 16

This section has been added to the arXiv version in November 2014, only. The motiva-
tion has been to give an alternative proof of Theorem16which uses some known results
from literature. For convenience of the reader there is someoverlap with material in Sec-
tion 4.1. This allows an independent reading. In the following we investigate the general
situation of an HNN extensionG which is given asG =

〈
H, b | bab−1 = ϕ(a), a ∈ A

〉

with a finitely generated base groupH . By theBack-to-base probabilitywe mean the
probability that a random walk in the associated Cayley graph of G ends in the base
groupH . In order to make the statement precise we fix the following notation. We
let H be the base group which is generated by some finite subsetΣ ⊆ H such that
Σ = Σ−1. We use a symmetric set of generators in order to apply Proposition 22. (In
fact, Proposition22 is false for non-symmetric generating sets, in general.) Welet A
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andB be isomorphic subgroups ofH andϕ : A → B be a fixed isomorphism between
them. Then, as usual,G =

〈
H, b | bab−1 = ϕ(a), a ∈ A

〉
denotes the corresponding

HNN extension ofH with stable letterb. By ∆ we denote the set∆ = Σ ∪
{
b, b
}

whereb = b−1. Thus, the “evaluation of words over∆” defines a monoid presentation
η : ∆∗ → G, which is induced by the inclusion∆ ⊆ G. Recall that forx ∈ ∆∗ and
a ∈ ∆ we denote by|x|a the number of occurrences of the lettera in the wordx, and
we let |x|β = |x|b + |x|b. Forx ∈ ∆∗ let x̂ ∈ ∆∗ denote a Britton-reduced word such
thatη(x) = η(x̂) in G. Using this notation let us define‖x‖β by ‖x‖β = |x̂|β .

For eachn ∈ N we view∆n as a probability space with a uniform distribution.
Thus, we consider random walks in the Cayley graph ofG w.r.t. the generating set∆
where each outgoing edge is chosen with equal probability. In contrast to Section4.1
random walks may backtrack, i.e., they are not necessarily reduced words. We aim to
show the following result.

Theorem 20. LetG =
〈
H, b | bab−1 = ϕ(a), a ∈ A

〉
be an HNN extension ofH and

η : ∆∗ → G as above. Then we haveA 6= H 6= B if and only if{x ∈ ∆∗ | η(x) 6∈ H}
is strongly generic in∆∗.

Remark 21.In terms of amenability of Schreier graphs (see e.g., [5,14]) we can restate
Theorem20 as follows: LetG =

〈
H, b | bab−1 = ϕ(a), a ∈ A

〉
be an HNN extension

of H andη : ∆∗ → G as above. The Schreier graphΓ (G,H,∆) is non-amenable if
and only ifA 6= H 6= B.

Before we prove Theorem20 let us show how to derive Theorem16 from Theo-
rem20. We use the following two propositions (see also [14]).

Proposition 22 ([5, Prop. 38, Thm. 51]).Let G be a finitely generated group and
H ≤ G be a subgroup. Letη : ∆∗ → G, η′ : ∆′∗ → G two monoid presentations ofG.
Then,∆∗ \ η−1(H) is strongly generic in∆∗ if and only if∆′∗ \ η′−1(H) is strongly
generic in∆′∗.

Proposition 23 ([1,6,10]). LetG be a finitely generated group,H ≤ G be a subgroup,
andη : ∆∗ → G be a monoid presentation ofG. LetΞ be the set of reduced words
of ∆∗. Then,∆∗ \ η−1(H) is a strongly generic in∆∗ if and only ifΞ \ η−1(H) is
strongly generic inΞ.

In order to see Theorem16we proceed as follows: LetΞ denote the set of reduced
words in{a, a, b, b}∗ andη : {a, a, b, b}∗ → G1,2 the canonical presentation. Then
Theorem20, Proposition22, and Proposition23 show thatΞ \ η−1(H) is strongly
generic inΞ. Now, with the same arguments as in Section4.1 it follows that elements
which cannot be conjugated intoH form a strongly generic set inΞ.

Now, we turn to the proof of Theorem20. It covers the rest of this section. First, we
considerA = H = B. ThenG is a semidirect productG = H ⋊ Z. Let π2 : G → Z

the projection onto the second component. Then we haveη(x) ∈ H if and only if
π2(η(x)) = 0. Since∆ can be viewed as a constant, it is not hard to see that we have
Pr [η(x) ∈ H ] ∈ Θ(1/

√
n). (Actually, if |∆| is not viewed as a constant we obtain

a more precise estimation. Since the expected value for|x|β is n/2 |∆| one can show

Pr [η(x) ∈ H ] ∈ Θ(
√

|∆| /n). But we do not need this for our purpose.)
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The second case isA = H 6= B. For example,G is the Baumslag-Solitar group
BS1,2. We content ourselves with a lower bound onPr [η(x) ∈ H ]. We begin with a
the conditional probability:

Pr
[
η(x) ∈ H

∣∣∣ |x|β = 2m
]
≥

(
2m+1

m

)

(m+ 1)2m
∈ Θ(m−1.5). (12)

To see this observe that, due toA = H , a Britton reduction on a wordx ∈ ∆∗ leads
always toH if both, |x|b = |x|b and for every prefixy of x we have|y|b ≥ |y|b.
Thus,η(x) ∈ H as soon as the projection ofx onto

{
b, b
}∗

is a Dyck word. As we
noticed earlier, the number of Dyck words of length2m is them-th Catalan number

1
m+1

(
2m
m

)
∈ Θ(m−1.5). We obtain a trivial estimationPr [η(x) ∈ H ] ∈ Ω(n−2.5)

which is good enough because it means that forA = H the set{x ∈ ∆∗ | η(x) 6∈ H}
is not strongly generic in∆∗. However, using some standard Chernoff bounds and the
fact that the expected value for|x|β is n/2 |∆|, we can state forA = H a more precise
upper and lower bound as follows:

Pr [η(x) ∈ H ] ∈ O(
√
|∆| /n) ∩Ω((|∆| /n)1.5). (13)

Finally, let us consider the most interesting caseA 6= H 6= B. This is the situation
e.g. in the Baumslag groupG1,2. In order to finish the proof of Theorem20 we have
to showPr [η(x) ∈ H] ≈ 0. This covers the rest of this section. As we have done in
Section4 we switch the probability space. We embed∆n into the space∆∗ with a
measureµ0,n on ∆∗ which concentrates its mass on∆n (i.e., µ0,n(∆

n) = 1) with
corresponding probabilityPr0,n [· · ·]. We now have to show thatPr0,n [η(x) ∈ H ] ≈ 0
if A 6= H 6= B. Let µm be the measure on∆∗ which is defined by reading letters
from ∆ each with equal probability as long as the random walk contains at mostm
lettersβ ∈

{
b, b
}

. This gives a corresponding probability on∆∗ which is concentrated
on those words with|x|β = m. We denote the corresponding probability byPrm [· · ·].
Still there is a close connection between these probabilities. In particular:

Pr0,n

[
|x|β = m

]
=

(
n

m

)
· (2/ |∆|)m · (1− 2/ |∆|)n−m = Prm [|x| = n ] (14)

Pr0,n

[
η(x) ∈ H

∣∣∣ |x|β = m
]
= Prm [η(x) ∈ H | |x| = n] (15)

SincePr0,n
[
|x|β = m

]
≈ 0 form ≤ n/ |∆|we can perform a similar computation

as in Section4.1:

Pr0,n [η(x) ∈ H] =

n∑

m=0

Pr0,n

[
η(x) ∈ H ∧ |x|β = m

]

≈
n∑

m=⌈n/|∆|⌉

Pr0,n

[
η(x) ∈ H ∧ |x|β = m

]

=

n∑

m=⌈n/|∆|⌉

Pr0,n

[
η(x)

∣∣∣ |x|β = m
]
· Pr0,n

[
|x|β = m

]
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=
n∑

m=⌈n/|∆|⌉

Prm [η(x) ∈ H | |x| = n] · Prm [|x| = n ]

=

n∑

m=⌈n/|∆|⌉

Prm [η(x) ∈ H ∧ |x| = n ]

≤
n∑

m=⌈n/|∆|⌉

Prm [η(x) ∈ H] .

Therefore, it is enough to show thatPrm [η(x) ∈ H ] ≈ 0 as a function inm.
There is also a natural probability distribution onΣ∗ which is formally defined by

µ0 (N.B. µ0 is different fromµ0,n!) Indeed, we haveµ0(Σ
∗) = 1 and the distribution

onΣ∗ is given by a random walk which stops with probability2/ |∆| and, if it does not
stop, then it chooses the next letter with equal probability. In order to emphasize that
the mass ofµ0 is onΣ∗ we also writePrΣ [y] = Pr0 [y] for y ∈ Σ∗.

Lemma 24. For all γ ∈ Σ∗ andβ ∈
{
b, b
}

we have

PrΣ
[
η(βγyβ) 6∈ H

]
≥ 2

|∆|2
.

Proof. By symmetry we may assumeβ = b. We have to show thatPrΣ [η(γy) /∈ A] ≥
2/|∆|2. We consider the casesη(γ) /∈ A andη(γ) ∈ A separately. Forη(γ) 6∈ A we
obtain

PrΣ [η(γy) /∈ A] ≥ PrΣ [y = 1] = 2/ |∆| ≥ 2/|∆|2.
Forη(γ) ∈ A anda ∈ Σ we obtainη(γa) ∈ A if and only if η(a) /∈ A. SinceA 6= H
andΣ generatesH , there must be some lettera ∈ Σ with η(a) 6∈ A. Therefore, in the
second case

PrΣ [η(γy) /∈ A] ≥ PrΣ [y = a] = 2/|∆|2.
⊓⊔

As before aβ-factorization ofx ∈ ∆∗ with |x|β = m is written as a wordx =

γ0β1γ1 . . . βmγm such thatβi ∈
{
b, b
}

andγi ∈ Σ∗ for 1 ≤ i ≤ m. Using the notion
of β-factorization we define for all0 ≤ ℓ ≤ m a random variableXℓ : ∆∗ → N

as follows. We letXℓ(x) = ‖γ0β1γ1 . . . βℓγℓ‖β. Another way to explainXℓ(x) is as
follows. Choose any prefixz of x such that|z|β = ℓ, compute the Britton reduction̂z
of z and letXℓ(x) = |ẑ|β , i.e.,Xℓ(x) = ‖z‖β . The differencesYi = Xi −Xi−1 define

random variablesYi for 1 ≤ i ≤ m with values in{−1, 1}. Clearly,Xℓ =
∑ℓ

i=1 Yi for
all 0 ≤ ℓ ≤ m. Note thatX0 = 0 andX1 = Y1 = 1 are constant functions.

Consider aβ-factorizationx = γ0β1γ1 . . . βmγm for x with |x|β = m. For 1 ≤
i ≤ m let zi−1 be Britton-reduced such thatη(zi−1) = η(γ0β1 . . . γi−2βi−1). Then the
β-factorization ofzi−1 becomesγ′

0β
′
1γ

′
1 . . . β

′
jγ

′
j for somej ≤ i− 1. Note that the last

factorγ′
j can be, a priori, any word inΣ∗. Now, it depends only on the factorsβ′

jγ
′
j and

γi−1βi whether or not theβ-length of the Britton-reduced word increases or decreases
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when reading the next factorγi−1βi. The probability for that is described by the random
variableYi. For allε ∈ {−1, 1}i−1 Lemma24shows

Pr [Yi = 1 | Yj = εj for j < i] ≥ 1/2 + 1/2 · 2/ |∆|2 = 1/2 + 1/ |∆|2 . (16)

Let {Zi | i = 1, . . . ,m} be a set ofm independent random variables taking values in
{−1, 1} such thatPr [Zi = 1] = 1/2 + 1/ |∆|2 for 1 ≤ i ≤ m. By (16) it follows that
for everyε = (εj) ∈ {−1, 1}k−1 and1 ≤ k ≤ m we have

Prm [Yk = −1 | Yj = εj ∀j < k] ≤ Pr [Zk = −1] . (17)

This observation is crucial in the proof of the next lemma.

Lemma 25. We have

Prm [Xm = 0] ≤
(
1− 4

|∆|4

)m/2

.

Proof. The assertion is trivial form = 0 orm odd. Hence, letm ≥ 2 be even. First, let
us show that for allp ∈ Z, 1 ≤ k ≤ ℓ ≤ m, andε = (εj) ∈ {−1, 1}k−1 we have

Prm

[
ℓ∑

i=k

Yi ≤ p

∣∣∣∣∣ Yj = εj ∀j < k

]
≤ Prm

[
ℓ∑

i=k

Zi ≤ p

]
. (18)

We prove (18) by induction onk − ℓ. The caseℓ = k is trivial, hence letℓ < k.

Prm

[
ℓ∑

i=k

Yi ≤ p

∣∣∣∣∣ Yj = εj ∀j < k

]

=
∑

εk=±1

Prm [Yk = εk | Yj = εj ∀j < k] · Prm
[

ℓ∑

i=k+1

Yi ≤ p− εk

∣∣∣∣∣ Yj = εj ∀j ≤ k

]

≤
∑

εk=±1

Prm [Yk = εk | Yj = εj ∀j < k] · Prm
[

ℓ∑

i=k+1

Zi ≤ p− εk

]

≤
∑

εk=±1

Prm [Zk = εk] · Prm
[

ℓ∑

i=k+1

Zi ≤ p− εk

]
= Prm

[
ℓ∑

i=k

Zi ≤ p

]
.

We have to explain the inequality leading to the last line above. By (17) there is some
δε,k ≥ 0 such thatPrm [Yk = −1 | Yj = εj ∀j < k] + δε,k = Prm [Zk = −1]. Thus,
by definition,Prm [Yk = 1 | Yj = εj ∀j < k] − δε,k = Prm [Zk = 1]. Hence, the in-

equality follows fromPrm

[∑ℓ
i=k+1 Zi ≤ p− 1

]
≤ Prm

[∑ℓ
i=k+1 Zi ≤ p+ 1

]
.

As a special case fork = 1 andℓ = m we obtain

Prm [Xm ≤ p] = Prm

[
m∑

i=1

Yi ≤ p

]
≤ Prm

[
m∑

i=1

Zi ≤ p

]
. (19)
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In order to prove the lemma it is enough to considerp = 0. We get

Prm [Xm = 0] ≤ Pr

[
m∑

i=1

Zi ≤ 0

]
=

∑

ε=(εj)∈{−1,1}m

|{j| εj=1}|≤m/2

m∏

i=1

Pr [Zi = εi]

≤ 2m ·
(
1

2
− 1

|∆|2

)m/2

·
(
1

2
+

1

|∆|2

)m/2

=

(
1− 4

|∆|4

)m/2

.

⊓⊔

Hence, we have concluded the proof of Theorem20 because Lemma25 implies in
particularPrm [Xm = 0] ≈ 0.

Conclusion

We have investigated the complexity of the conjugacy problem in two important groups
in combinatorial group theory. The conjugacy problem inBS1,2 is TC

0-complete. If
division in power circuits is non-elementary in the worst case, then the conjugacy prob-
lem in G1,2 is non-elementary on the average, but solvable inO(n4) on a strongly
generic subset. This is a striking contrast underlying the importance of generic case
complexity on natural examples. In order to derive the result about generic case com-
plexity, we proved a more general result about HNN extensions. We showed thatG =〈
H, b | bab−1 = ϕ(a), a ∈ A

〉
has a non-amenable Schreier graph with respect to the

base groupH if and only ifA 6= H 6= B.
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