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Abstract. The conjugacy is the following question in algorithmic goctheory:
given two wordse, y over generators of a fixed grodp, decide whether andy
are conjugated, i.e., whether there exists sersach thatzz~' = y in G. The
conjugacy problem is more difficult than the word problemgeneral. We in-
vestigate the conjugacy problem for two prominent groupsBaumslag-Solitar
groupBS; > and the Baumslag(-Gersten) groGh 2. The conjugacy problem
in BS; 2 is TC®-complete. To the best of our knowledsS, » is the first nat-
ural infinite non-commutative group where such a precise lawdcomplexity
is shown. The Baumslag grou@, > is an HNN extension 0BS; .. We show
that the conjugacy problem is decidable (which has been krimefore); but our
results go far beyond decidability. In particular, we aréedb show that conju-
gacy inG1 2 can be solved in polynomial time in a strongly generic sgttirhis
means that essentially for all inputs conjugac¥dn can be decided efficiently.
In contrast, we show that under a plausible assumption #a@ge case complex-
ity of the same problem is non-elementary. Moreover, we ig®a lower bound
for the conjugacy problem G, 2 by reducing the division problem in power
circuits to the conjugacy problem i@ ,>. The complexity of the division prob-
lem in power circuits is an open and interesting problem teger arithmetic. To
date it is believed that this problem has non-elementarg tomplexity.

Another contribution of the paper concerns a general seteatbout HNN ex-
tension of the fornG' = (H,b | bab~" = ¢(a),a € A) with a finitely generated
base groud . We show that the complement Bf is strongly generic if and only
if A # H # B. This is the situation foiG; 2; and yields an important piece
of information why it is possible to solve conjugacy 1@ 2 in strongly generic
polynomial time. Note also that the complementrbfis strongly generic if and
only if the Schreier graph af with respect to the subgroufd is non-amenable.

Introduction

More than 100 years ago Max Dehn introduced the word probledrtiae conjugacy
problem as fundamental decision problems in group theayGlLbe a finitely gener-
ated groupWord problem Given two wordse, y written in generators, decide whether
x = y in G. Conjugacy problemGiven two wordsz, y written in generators, decide
whetherz ~¢ v in G, i.e., decide whether there existsuch thatzz~! =y in G. In
recent years, conjugacy played an important role in nonreotative cryptography, see
e.g.[7,11,27]. These applications use that is is easy to create elemdmth are conju-
gated, but to check whether two given elements are conjdgaight be difficult even if
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the word problem is easy. In fact, there are groups where trd problem is easy but
the conjugacy problem is undecidabie?]. Frequently, in cryptographic applications
the ambient group is fixed. The focus in this paper is on th¢ugay problem irG 5.

In 1969 Gilbert Baumslag defined the groGp 2 as an example of a one-relator group
which enjoys certain remarkable properties. It was intoedlas an infinite non-cyclic
group all of whose finite quotients are cyclig[In particular, it is not residually finite;
but being one-relator it has a decidable word problém.[The groupG; > is gener-
ated by generators andb subject to a single relatiobub—'a = a?bab—!. Another
way to understand; » is to view it as an HNN extension of the even more promi-
nent Baumslag-Solitar grouBS; ». The groupBS; ; is defined by a single relation
tat~' = a?® wherea andt are generatofs The complexity of the word problem and
conjugacy problemiiBS; » are very low; indeed, we show that they aie’-complete.
However, such a low complexity does not transfer to the cexipl of the correspond-
ing problems in HHN-extensions lik&; ,. Gersten showed that the Dehn function of
G 2 is non-elementaryd]. Moreover, Magnus’ break-down procedures] on G »

is non-elementary, too. This means that the time compléaitthe standard algorithm
to solve the word problem i, » cannot be bounded by any fixed tower of exponen-
tials. Therefore, for many year&; » was the simplest candidate for a group with an
extremely difficult word problem. However, Myasnikov, Ugb&, and Won showed in
[20] that the word problem of the Baumslag group is solvable ilypamial time! In
order to achieve a polynomial time bound they introducedraatéde data structure for
integer arithmetic which they callggbwer circuit The data structure supports+, <,
and(z,y) — 2%y, a restricted version of multiplication which includes erpntiation

x — 2%. Thus, by iteration it is possible to represent huge valire®lving the tower
function) by very small circuits. Still, all operations aleocan be performed in poly-
nomial time. On the other hand there are notoriously diffiadthmetical problems in
power circuits, too. A very important one is division. Th@in are power circuitg’
and C’ representing integers. andm’; the question is whether. dividesm’. The
problem is clearly decidable by convertingandm’ into binary; but this procedure is
non-elementary. So far, no idea for any better algorithmiman. It is plausible to as-
sume that the problem “division in power circuits” has nawdmtary time complexity
at all.

In the present paper we show a tight relation between thelgrab“division in
power circuits” and conjugacy i1 2. Our results concerning the Baumslag-Solitar
groupBS; 2, the Baumslag groufx 2, itS generic case complexity, and division in
power circuits are as follows.

— The conjugacy problem d8S; , is TC"-complete.

— There is a strongly generic polynomial time algorithm fa¥ ttonjugacy problem in
G 2. This means, the difficult instances for the algorithm angogentially sparse,
and therefore, on random inputs, conjugacy can be solvedieeftiy.

— If “division in power circuits” is non-elementary in the waircase, then the conju-
gacy problem inG; 5 is non-elementary on the average.

3 Adding a generatob and a relatiorbab™" = t results inG1 ». Indeed, due tdab~! = ¢, we
can remove and we obtain exactly the presentation®f » above.



— A random walk in the Cayley graph @&, » ends with exponentially decreasing
probability in BS; 2. In other terms, the Schreier graph @f; » with respect to
BS; , is non-amenable.

Decidability of the conjugacy problem i&; » is not new, it was shown iré[* and de-
cidability outside a so-called “black hole” follows alrgaftlom [4]. Our work improves
Beese’s work leading to a polynomial time algorithm outsidproper subset of the
“pblack hole” (and decidability everywhere). Thus, our rdésiderlines that in special
cases likeG 2 much better results than stated i} fire possible. Let us also note that
there are undecidable problems (hence no finite averagecoasglexity is defined),
like the halting problem for certain encodings of Turing miaes, which have generi-
cally linear time partial solutions. However, many of thesamples depend on encod-
ings and special purpose constructions. In our case wedenesnatural problem where
the average case complexity is defined, but the only knowarisihgn to solve it runs in
non-elementary time on the average. Nevertheless, tharpasynomialp (roughly of
degreet) such that the probability that the same algorithm requirese tharp(n) steps
on random inputs converges exponentially fast to zero. Taia technical difficulty in
establishing a strongly generic polynomial time compleistto show that a random
walk of lengthn in the Cayley graph 06 » ends with probability less thafi — &)

in the subgrou@BS; » for somes > 0. Random walks in infinite graphs are widely
studied in various areas, see edy]][or the textbook P5]. In Section5 we prove a gen-
eral statement about HNN extension of the foatm= (H,b | bab™! = p(a),a € A)
with a finitely generated base grouip and A a finite symmetric set of generators for
G. We show that the complement &f (inside A*) is strongly generic if and only if
A # H # B. With other words, the Schreier gragi(G, H, A) is non-amenable if
and only if A # H # B. (For a definition of amenability and its equivalent charac-
terizations see e.g5[14].) This applies toG; » because it is an HNN extension where
A # H # B. However, in the special case 6f; » we can also apply a technique
quite different from the general approach. In Sectlohwe define a “pairing” between
random walks in the Cayley graph and Dyck words. We exhibit an0 such that for
each Dyck wordw of length2n the probability that a pairing witlv evaluates td is
bounded by(1/4 — )™. The result follows since there are at mé%tDyck words.

Notation and preliminaries

Words. An alphabetis a (finite) set™; an element € X' is called aletter. The set
X" forms the set ofwords of lengthn. The length ofw € X™ is denoted byw].
The set of all words is denoted by*. It is the free monoid oveE'. Leta € X be a
letter andw € X*. The number of occurrences @fin w is denoted byw|,. Clearly,
lw| =" ,c x5 |w|,. If we can writew = uav, then we call: afactor of w; and we say
thatw = uav is afactorization

Functions. We use standard-notation for functions fronlN to non-negative reals
RZ°, (This includes of cours&- and ©-notation.) Thetower functionr : N — N
is defined byr(0) = 0 and7(i + 1) = 27 for i > 0. It is primitive recursive. We

4 It is unknown whether the conjugacy problem in one-relatougs is decidable, in general.



say that a functiorf : N — R=0 is elementaryif the growth of f can be bounded
by a fixed number of exponentials. It is calladn-elementaryf it is not elementary,
but f(n) € 7(O(n)). Thus, in our paper non-elementary means a lower and an upper
bound.

Circuit complexity. We deal with various complexity measures. On the lowestl leve
we are interested in problems which can be decided by (umjf@iC®-circuits. These
are circuits of polynomial size with constant depth whereallew Boolean gates and
majority gates, which evaluate tdf and only if the majority of inputs i§. For a precise
definition and uniformity conditions we refer to the textlida 3. TC circuits can be
simulated byNC' circuits, i.e., circuits of logarithmic depth where only@ean gates
of constant fan-in are allowed. Thu(’ is a very low parallel complexity class. Still
it is amazingly powerful with respect to arithmetic. In pautar, we shall use Hesse’s
result that division of binary integers can be computed byiiéorm family of TC°-
circuits [12,13].

Time complexity. A uniform family of TC’-circuits computes a polynomial time com-
putable function. We use a standard notion for worst-casef@naverage case com-
plexity and random access machines (RAMs) as machine madellgorithm.4 com-
putes a function between domaihs and D’. In our applicationsD comes always
with a natural partitionD = |J {D™ | n € N} where eachD(™ s finite. The time
complexity ¢4 is defined byt4(n) = max {t4(w) | w € D™ }. Assuming a uni-
form distribution among elements iR(™), the average case complexity is defined by
ava(n) = |m1—n>‘ > wepm ta(w).

Generic case complexityFor many practical applications the “generic-case belravio
of an algorithm is more important than its average-case ostagase behavior. We refer
to [14,15] where the foundations of this theory were developed and $pfpr appli-
cations in cryptography. The notion géneric complexityefers to partial algorithms
which are defined on a (strongly) generic $6 D. Thus, they may refuse to give an
answer outsidé, but if they give an answer, the answer must always be colreour
context it is enough to deal with totally defined algorithnmgl strongly generic sets.
Thus, the answer is always computed and always correchéutintime is measured by
a worst-case behavior over a strongly generidsetD. Here a sef is calledstrongly
generig if there exists an > 0 such tha D™ \ I| / |[D(™| < 27<" for almost all

n € N. This means the probability to find a random string outgidenverges exponen-
tially fast to zero. Thus, if an algorithpd runs in polynomial time on a strongly generic
set, then, for practical purpose4 behaves as a polynomial time worst-case algorithm.
This is true although the average time complexitydo€an be arbitrarily high.

Group theory. We use standard notation and facts from group theory as foutie
classical text bookl[6]. GroupsG are generated by some subset G. We letS =
S~1 and we viewS U S as an alphabet with involution; its elements are caligtbrs
We havea = a for letters and also for words by letting ——a,, = @, ---a; where
a; € SU S are letters. Thus, if € G is given by a wordy, thenw = g~! in the group
G. For a wordw we denote byw| its length. We say thab is reducedif there is no
factoraa for any letter. It is calledtyclically reducedf ww is reduced. For words (or
group elements) we write ~¢ y to denote conjugacy, i.ex,~¢ y if and only if there
exists some € G such thatxz = y in G. For the decision problem “conjugacy @



we assume that the input consists of cyclically reduced sorandy if not explicitly
stated otherwise. We apply the standard (so called Magraaktown) procedure for
solving the word problem in HNN extensions. Our calculasi@ne fully explicit and
accessible with basic knowledge in combinatorial grouptie

Glossary. TCY circuit classz ~¢ y conjugacy in groups.I’, §) power circuitss(P),
e(M) evaluation of nodes and markinggn) tower function. Baumslag-Solitar group:
BS; 2 = (a,t | tat™" = a?). Baumslag groupGy 2 = (a,b | bab~'a = a®ba=1b1).
Subgroup relationgl = (a), T = (t) < BS12 = Z[1/2] x Z = H < Gy 2. Standard
symmetric set of generators f6t; » is ¥ = {a,a,b,b} andz = >~ in groups.

1 Power circuits

In binary a number is represented as a surs Zf:o b;2* with b; € {0, 1}. Allowing

b; € {—1,0,1} we obtain a “compact representation” of integers, which memuire
less non-zerd;s than the normal representation. The notion of power diisuilue
to [21]. It generalizes compact representations and goes famidegince it allows a
compact representation of tower functions. Formallgoaver circuitof sizen is given
by a pair(I',0). Here, I' is a set ofn vertices and) is a mapping : I’ x I' —
{-1,0,+1}. The support ob is the subsetA C I' x I with (P,Q) € A —
0(P,Q) # 0. Thus,(I', A) is a directed graph. Throughout we require th&tA) is
acyclic. In particular§ (P, P) = 0 for all verticesP. A markingis a mappingV/ : I’ —
{-1,0,+1}. We can also think of a marking as a subsefofvhere each element in
M has a sign+ or —). If M(P) = 0 forall P € I" then we simply writeM = 0.
Each nodeP € I is associated in a natural way with a successor marking I" —
{-1,0,+1}, @ — 6(P,Q), consisting of the target nodes of outgoing arcs frBm
We define theevaluations(P) of a node (M) of a marking resp.) bottom-up in the
directed acyclic graph by induction:

e(0) =0,
g(P) = 25(4r) for a nodeP,
e(M) = Z M(P)e(P) for a marking)M/.
P

Note that leaves evaluatetothe evaluation of a marking is a real number, and the eval-
uation of a nodeP is a positive real number. Thus(P) ande(M) are well-defined.
We haves(Ap) = log,(e(P)), thus the successor marking plays the role of a loga-
rithm. We are interested only in power circuits where all kirags evaluate to integers;
equivalently all nodes evaluate to some positive naturallver in2™.

Thepower circuit-representationf an integer sequenee,, ..., my iS given by a
tuple (I",0; My, ..., M) where(I",0) is a power circuit and\/y, ..., M), are mark-
ings such that(M;) = m,. (Hence, a single power circuit can store several different
numbers; a fact which has been crucial in the proof of Prdioos?, see f].)

Example 1.We can represent every integer in the rafge, n] as the evaluation of
some marking in a power circuit with node &%, ,,, . .., P} such that(P;) = 2¢ for



0 < i< ¢andl = [log,n]. Thus, we can convert the binary notation of an integer
into a power circuit withO(log |n|) vertices and)((log |n|) loglog [n|) arcs.

Example 2.A power circuit of sizen can realizer(n) since a chain ofi nodes repre-
sentsr(n) as the evaluation of the last node.

Proposition 3 ([20,8]). The following operations can be performed in quadratic time
Input a power circuit(I, §) of sizen and two markings\/; and M,. Decide whether
(I',6) is indeed a power circulit, i.e., decide whether all markiegaluate to integers.
If “yes™

— Decide whetheg (M) < e(Ma).

— Compute a new power circuit with marking$, X andU such that
1. e(M) = (M) £ e(Ma).
2. e(M) = 22(M0) . o(My).
3. e(My) = 25(X) . ¢(U) and eitherU = § or £(U) is odd.

Let us mention that the complexity of the division problenpmwer circuits is open.
Here, the division problem is as follows. Given a power dirofisizen and two mark-
ings M, and My, decide whethes(M;) | e(Ma), i.e.,e(M;) dividese(Ms). We sus-
pect that the division problem in power circuits is extreyrdifficult. The only known
general algorithm transformag M) ande(M,) first in binary and solves division after
that. So, the first part involves a non-elementary explasion

2 Conjugacy in the Baumslag-Solitar groupBS; »

The solution of the conjugacy problem in the Baumslag gr@up relies on the sim-
pler solution for the Baumslag-Solitar grol8; ». The aim of this section is to show
that the conjugacy problem BS; ; is TC’-complete. The groujBs; » is given by
the presentatioqa, t | tat~* = a*). We haveta = a’*t andat™' = t~'a®. This al-
lows to represent all group elements by words of the forfu"t? with p,q € N
andr € Z. However, forg > 0, transformingt?a” into this form leads ta*¢t? with

s = 2%r, so the wordz*t? is exponentially longer than the worda”. We denote by
Z[1/2] = {p/29 € Q| p,q € Z} the ring ofdyadic fractionsMultiplication by2 is an
automorphism of the underlying additive group and theefee can define the semi-
direct productz[1/2] x Z as follows. Elements are paifs,m) € Z[1/2] x Z. The
multiplication inZ[1/2] x Z is defined by

(r,m)-(s,q) = (r+2"s,m+q).

Inverses can be computed by the form@tam) =1 = (—r - 27™ —m). It is straight-
forward to show that — (1,0) andt — (0, 1) defines an isomorphism between
BS; 2 andZ[1/2] x Z. In the following we abbreviatBS, » (= Z[1/2] x Z) by H.
There are several options to represent a group elemenf{. In aunary representa-
tion we write g as a word over the alphabet with invqutic{m a,t, i}. Another way
is to writeg = (r,m) with » € Z[1/2] andm € Z. In the following we use both
notations interchangeably. Thénary representationf (r, m) consists of- written in



binary (as floating point number) and in unary. Let us writg(r, m) with r = 2ks
andk, s,m € Z. We then havé2s, m) = (0,k) - (s,m — k) and the corresponding
triple [k, s,m — k] € Z3 is called thetriple-representatiorof (r, m); it is not unique.
The power circuit representationf g = [k, s, m — k] is given by a power circuit and
markingsK, S, L such that=(K) = k, e(S) = s, ande(L) = m — k. Note that
if g € {a,a,t,1}" satisfiesg = (r,m) € H, then|r| < 2" and|m| < n. Thus, a
transformation from unary to binary notation is on the séde s

Proposition 4. Let (r1,m1), ..., (rn, my) € Z[1/2] x Z given in binary representa-
tion for all 7. Then there is a uniform construction ofTa’-circuit which calculates
(rym) = (r1,my) - (rn, my) INZ[1/2] x Z.

Proof. The statements concerning computation$ @ are standard and can be found
e.g. in the textbookd3). Let N = max {my, ||logyr:|] +1,n| 1 <i < n}. Since
the m, are written in unary, we may assume for simplicity that|al;| < 1 (hence,
requiring?2 bits) and all; are written in binary using exact®/N bits (V bits for the
mantissa andv for the exponent). Thus, we may assume that the input is stiiitg of
length exactly2(N? + N). We havem = """ | m;. By induction, using the equality
(r,m)(s,q) = (r+s-2™, m+q), we see- = 3" r;-2F wherek; = 3%~ ;. Since
the numberg; are bounded by, they can be calculated by the iterated addition of the
unary numbersn; for j < 4, which is inTC. In particular,n can be calculated by a
TC-circuit. The bit shiftr; — r; - 25 can be computed by BC’-circuit. It remains to
calculate the iterated addition of binary numbers whichoissible inTC°. a

The next proof uses a deep result of Hesse: integer divisionuniformTC’.

Proposition 5. Let f = (r,m),g = (s,q) € Z[1/2] x Z be given in binary represen-
tation. Then there is a uniform construction oT&€"-circuit which decides ~y g¢.

Proof. Let (r,m) ~g (s,q), i.e., there aré € Z, x € Z[1/2] with (x,k)(r,m) =
(s,q)(x, k). In particular,(r,m) ~g (s,q) if and only if m = ¢ and there aré € Z,
x € Z[1/2] such that

s=r-28 —z.(2m—1). (1)

We have(r,m) ~g (s,m)ifandonlyif (—r, —m) ~g (—s, —m) since(—p, —m) ~g
(=p2=™,—m) = (p,m)~! for all p € Z[1/2]. Therefore, without restrictiom € N.
Since a conjugation witht maps(r, m) to (2%, m), we may assume thats € Z and
m € N. Form = 0 this meangr,0) ~g (s,0) if and only if there is somé € Z such
thats = r - 2. This can be decided iiC’. Form = 1 we can choose = r — s and
the answer is “yes”. Fom > 2 we can multiply () by 2¢ such that: - 2¢ € Z. We
obtain2’ - (r-2F — s) =2tz - (2™ —1),i.e.,2° - (r-2F —5) =0 mod (2™ — 1). The
number2 is invertible modul®™ — 1 and its order isn. Hence, actually forn > 1:

(r,m) ~pg (s,m) <= FkEN:0<k<mAr-2" —s=0mod (2™ —1). (2)
It can be checked whether sucl axists using Hesse’s result for division]13]. 0O

Theorem 6. The word problem as well as the conjugacy problenBif; - is TC-
complete.



Proof. By Proposition4 and Propositiord, the conjugacy problem can be solved in
TC°. The word problem is a special instance of the conjugacylprotand the word
problem inZ is TC’-hard in unary notation. This follows because H@"-hard prob-
lem MAJORITY(see PJ]) reduces uniformly to the unary word problemZn a

Remark 7.Let us highlight that integer division can be reduced to thgjegacy prob-
leminBS; ». Form > 1 we obtain as a special case @j &nd a well-known fact from
elementary number theory

0,m) ~g (2°=1,m) <= 2™ -1|2° -1 < m]s. (3)

If we allow a power circuit representation for integers riigs reduction from division
to conjugacy can be computed in polynomial time. Hence, rmehtary algorithm
is known to solve the conjugacy problem BS; » in power circuit representation,
whereas the word problem remains solvable in cubic timeshy [

3 Conjugacy in the Baumslag groupGi -

The Baumslag groufi » is an HNN extension of the Baumslag-Solitar grdsif; ».
We make this explicit. We 1eBS; » be our base group, generateddgandt. Again,
BS; ;2 is abbreviated agl. The groupH contains infinite cyclic subgroup$ = (a)
andT = (t) with AnT = {1}. Letb be a fresh letter which is added as a new
generator together with the relatibab—! = ¢. This defines the Baumslag groGp ».

It is generated by, ¢, b with defining relationgat—! = a? andbab~! = t. However,
the generatot is now redundant and we obtaf®,; » as a group generated ly b
with a single defining relatiohab='a = a?bab—!. We represent elements 6, »
by p-factorizations. As-factorizationis written as a wordt = 95171 - - - Bryr With
Bi € {b,b} andy; € {a,a,t,1}". The numbet: is called the3-lengthand is denoted as
|z|5 (i.e.,|2]5 = |2],+]2];). A transpositiorof a g-factorization: = vo 3171 - . . Beyk is
givenasz’ = Bii ... BkyeY0Biv - - - Bi—1vi—1 for somel <i < k. Clearly,z ~g, ,
2’ in this case. Throughout we identify a power’ with ¢* for lettersc and/ € N.
Britton reductions. A Britton reductiorconsiders some factgry 3 with v € {a,a@,t,7} .

There are two cases. First,df= b andy = o’ in H for some/ € Z then the factobyb
is replaced by*. Second, if3 = b andy = t‘ in H for somel € Z then the factobyb
is replaced by:*. At most|z|B Britton reduction are possible on a wordBe aware!
There can be a non-elementary blow-up in the exponents,)saaies. If no Britton
reduction is possible, then the wards calledBritton-reduced It is calledcyclically
Britton-reducedif xx is Britton-reduced. Britton reductions are effective hessawe
can check whethey = a’ (resp. = t) in H. Thus, oninput: € {a,a,t,7,b,b} we
can effectively calculate a Britton-reduced waravith z = Z in G; 2. The following
assertions are standard facts for HNN extensions,’sg@e [

1. If z is Britton-reduced them € H if and only if ||, = 0.

2. If z is Britton-reduced anﬁv|ﬁ =0thenz =1inGyqifandonlyifz =1in H.

3. LetBiyi ... By @andfinyg ... By, be p-factorizations of Britton-reduced words
z andy suchthak > 2 andz = yin G . Thenwe havé = k" and(f1, ..., Bk) =

(Bi,-.., B ). Moreovery; € 1T if o =bandy; € 1 Aif B2 =b.



Example 8.Define wordswy = t andw,, .1 = bw, a®, b for n > 0. Then we have
lw,| = 272 — 3 butw, = "™ in G ».

The power circuit-representatiof a S-factorizationyy 5171 - - . Bk IS the se-
quence(fy, ..., Br) and a power circuitl’, 0) together with a sequence of markings
Ko, S(), Lo, - ,Kk, Sk, Ly such that[E(Kl), E(Si), E(LZ)] = [kl, Si, gl] is the trlple
representation of; € H for 1 < ¢ < k. Itis known that the word problem & » is
decidable in cubic time. Actually a more precise statemelts

Proposition 9 ([20,8]). There is a cubic time algorithm which computes on input of a
power circuit representation of = 95171 - - - Bk @ power circuit representation of

a Britton-reduced word (resp. cyclically Britton-reducesrd) 7 such thatr = 7 in
G2 (resp.xz ~q, , 7). Moreover, the size for the power circuit representation s
linear in the size of the power circuit representationcof

Remark 10.A polynomial time algorithm for the result in Propositiémas been given
firstin [2(], it has been estimated &9 (n"). This was lowered ind] to cubic time.

Theorem 11. The following computation can be performed in tiég:*). Input: words
z,y € {a,a,b,b} . Decide whethefZ|, > 0 for a cyclically Britton-reduced fornt

of z. If “yes”, decidexz ~q,, y and, in the positive case, compute a power circuit
representation of somesuch that:a2z = y in Gq 2.

Proof. Due to PropositiorD, we may assume that input wordsandy are given as
cyclically Britton-reduced words. In particulaf,= = and|§|5 =n > 0. Let us write
T = yob®1y1...b%"y, as itsp-factorization where; = *1. If all &; = +1 then we
replacer andy by z andy. Hence, without restriction there exists some= —1. After
a possible transposition we may assume that b, - - - b~~,, with ¢y = —1. Since
y is cyclically Britton-reduced, too, Collins’ Lemmal(f, Thm. 1V.2.5]) tells us several
things: Ifz ~g, , y then|y|, = n and after some transposition thefactorization of
y can be written a$“'~} - - - b°~~/,. Moreover, still by Collins’ Lemma, we now have
T ~G, Y < Fk€Z:y=a"za""in Gy, The key is thatk is unique and that
we find an efficient way to calculatefit.

Casen = 1. We haver = b(r, m) andy = b(s, q) for some(r,m), (s, q) € Z[1/2] X Z.
Now, a*z = ya* in G if and only if (0, k)(r,m) = (s, q)(k,0). This forcesk =
q —m. Hence

TG,y = 2TMr=5421(¢—m) forn=1. (4)

Casen > 2andey = +1.Thenz = b(r, m)byz - - - b7y, andy = b(s, q)bys - - - b7
We haver # 0 # s sincex andy are Britton-reduced. For evely € Z and every
Britton-reduceds-factorizationb¥, b . . . b7, for a*za* we havey, € t*(r, m)T, and
hencey, = (2%r,p) for somep € Z. We conclude that there is a unigkec Z such
thata®za® = b(28r,p)b--- b7, € Gio, p € Z, and2¥r is an odd integer. This
means we may assume from the very beginning thad s are odd integers. Under
this assumption, ifi*za=* = y in G 5 then necessaril¢ = 0 and hence: = y in
G 2. We obtain the following algorithm to decide~g, , y.

5 Beese calculates i this valuek and computes certain normal forms which are checked for
equivalence. This leads to an exponential time algorithm.



— Fory; = (r,m) andv] = (s, q) calculate uniqué, ¢ € Z such tha*r and2‘s
are odd integers.
— Decide whethew*za* = a‘ya’ € Gi,. If “yes” thenz ~g,, y otherwise

€ 7Z/G1,2 Y.

Casen > 2andey = —1.Thenz = b(r,m)b~s - - - b, andy = b(s, q)b~y, - - - b5~
For everyk € Z we can writea*za" in some Britton-reduced form which looks like
bA1b---b*"F,. Now, 71 € t*(r,m)A. Thus, there is a unique € Z (necessarily
k = —m) such that; = (p,0) for somep € Z[1/2]. Using the same arguments as
above, we obtain the following algorithm. Fer = (r,m) and~; = (s,q) decide
whethera™"za™ = a~9ya? € Gy 2. If "yes” thenz ~q, , y otherwiser xXq, , v.

By Propositiond, the testsi*za* = y € G, » can be performed in cubic time. All
other computations can be done in quadratic time by Prdposit Since all transposi-
tions of the3-factorization fory have to be considered this yields @tn*)-algorithm.

O

For the remainder of the section the situation is as folldMs:haver = (r,m) €
Z[1/2] x Z andy = (s,q) € Z[1/2] x Z, both can be assumed to be in power circuit
representation. We may assume# 1 # y in Gy ». After conjugation with some*
wherek is large enough we may assume that, s, ¢ € Z. If m = 0 then we replace
x by bzb. Hence;m # 0 and, by symmetryy # 0, too. By @) and “division in power
circuits”, we are able to to test whetherm) ~g (0, m) and(s, q) ~g (0, ¢). Assume
that one of the answers is “no”. Sdy, m) + g (0,m). Thenthereisnd € AUT C H

such that(r, m) ~ h. Since then3v(r,m)¥p is Britton-reduced for al3 € {b,b},
v € {a,a,t,t}" we obtain:

Proposition 12. Letr,m € Z, m # 0. If (r,m) ot (0, m) then
(r,m) ~Gi,2 (s,9) <= (r,m) ~u (s,9).

By Propositionl2, we may assumg, m) ~g (0,m), (s,q) ~g (0,q), and(r,m) « g
(s, q). This involves perhaps non-elementary procedures. Hawitvemains to decide
(0,m) ~a,, (0,q), only. The last test is polynomial time again, even for posier
cuits.

Proposition 13. Letm, ¢ € Z. Then we have
(0,m) ~a,, (0,q9) = (m,0) ~x (¢,0) <= Tk € Z:m = 2"q.

Proof. The assertior{m,0) ~g (¢,0) <= 3k € Z : m = 2Fq is clear since
(m,0) = a™ and(q,0) = a?in H = BS; . Let (0,m) ~a,, (0,¢). We have to
show(m,0) ~x (q,0) since the other direction is trivial. We ha{g 0) ~q, , (0,q).
Let vgb°tyy - - - b°m,, be ap-factorization of some with n € N minimal such that
Z(q,0)z = (0,m). Sincexy(q,0)v = (p,0) for somep # 0, we haven > 1 and
g1 = —1 because there has to occur a Britton reduction. Tbugg, 0)y0b = P in
Gi,2. Now, 77(0,p)y1 € AU T if and only if 77 (0,p)y1 = (0,p). Thus, we may
assumey; = 1in H. Sincen is minimal we cannot have, = +1. Thus, we must
haven = 1 and we may choose = ~b for somey € H. This meansi(q,0)z =
b3(q,0)vb = (0, m) which implies(m, 0) ~x (g,0). O
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Corollary 14. The following problem is decidable in at most non-elemegntiane. In-
put: Power circuit representations, y for elements o6 ». Questionx ~q, , y?

Corollary 15. If there is no elementary algorithm to solve the divisionpem in
power circuits then the conjugacy problem in the BaumslagigG 2 is non-elementary
in the average case even for a unary representation of gréempents.

Proof. Assume that the conjugacy problem in the Baumslag g@up is elementary
on the average. We give an elementary algorithm to solvesidiviin power circuits.
Let (I,0) be a power circuit of sizes with markingsM and .S such thate(M) =
m ande(S) = s. For each node ifP € I' it is easy to construct a word(P) €
{a,a,b,b}" suchthat*"”) = w(P) in Gy » and|w(P)| < n™. Just follow the scheme
from Example8. Hence, in time2®("1°s™) we can construct words andy such that
x = (0,m) andy = (2° — 1,m) in G1 2. Now by Remark’ we havem | s if and only
if 2 ~a, , y. The number of words of lengtt’(" 15" is at mos2"" """ 0

4 Generic case analysis

Let us define a preorder between functions fidrto R=° as follows. We letf < g if
there exist: € N ande > 0 such that for almost alk we have

F(n) < nkg(n) +27°".

Moreover, we letf = g if both, f < gandg < f. We are mainly interested in functions
f = 0. These functions form an ideal in the ring of functions whigk bounded by
polynomial growth. Moreover, iff ~ 0 theng ~ 0 for g(n) € f(6(n)). The notion
f = g is therefore rather flexible and simplifies some formulae céfesider cyclically
reduced words over' = {a,a, b, b} of lengthn with uniform distribution. This yields
a functionp(n) = Pr [3y : # ~g,, y Ay € H|. We provep(n) ~ 0. More precisely,
we are interested in the following result.

Theorem 16. There is a strongly generic algorithm that decides in tith@*) on cycli-
cally reduced input words, y € {a,a, b, b}* with |zy| € 6(n) whetherz ~q, ,, ¥.

In the preceding section we have described the algorithnthfaconjugacy problem.
Hence, it remains to show that it runs strongly generical{n*). We give two proofs
of Theorem16. The first one is given in Sectioh 1 It uses a pairing by Dyck words.
It is a little bit tedious, but self-contained and elemewntdihe second proof is given
in Section5. It is based on a more general characterization which apmiall finitely
generated HNN extensions, see TheotnTo the best of our knowledge this char-
acterization has not been stated elsewhere. The proof igempthard, but in order to
derive Theoreni6 we need additional results from the literature.

4.1 Pairing with Dyck words: First proof of Theorem 16

Proof. By Theoremll, there is an algorithm deciding ~q, , ¥ which runs in time
O(n*) for inputs which cannot be conjugated to elementéf/inHence, we only have
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to bound the number of cyclically reduced words of lengthe 6(n) which can be
conjugated to some element H. For simplicity of notation we assume = n. A
reduced word inY™ can be identified with a random walk without backtracking in
the Cayley graph o6 > with generators, andb. We encode reduced words over

of lengthn in a natural way as words if? = X - {1,2,3}"~1. On 2 we choose

a uniform probability (e.g., if the-th letter isb then the: + 1-st letter isa, @, or b
with equal probabilityl /3). Because we are interested in conjugacy, we compute the
probability under the condition that € 2 is cyclically reduced. (Actually this does
not change the results but makes the analysis smoother.prbivability thatz € (2

is cyclically reduced is at leagt/3 for all n. Let C C (2 be the subset of cyclically
reduced words. We sho®r [Jy : # ~g,, y Ay € H | 2 € C] ~ 0. The question
whether there exists somewith z ~q, , ¥ is answered by calculating Britton re-
ductions for a transposition aof. The setC' is closed under transpositions and it is no
restriction to assume that|, > 1. Therefore, we can choose the transposition that

2’ = vu wherex = uv such that the first letter of is 5 € {b,b}. There are at most
such transpositions. Hence,

Pr(dy:a~g,,yAyeH|2€C] ~PrlzcH|zeC(]

= Prlre HAzeC|]-PrlzeC] ' <Prlze€ H]-PrlzeC] ' <

N W

Pr[z € H].

It is therefore enough to prover [z € H] ~ 0. We switch the probability space and
we embed? into the spacel™* with a measurey , on X* which concentrates of?,
i.e., to,n(£2) = 1. Within £2 we still have a uniform distribution fot ,,. In order to
emphasize this change of view, we write|[- - -] = P, [- - -]. We are now interested
inwordsz € {b,b} - £* which contain exactlyzm letters3 € {b,b} form > 1.
(The numberz|; must be even ife € H.) Each such word can be written agia
factorization of the formw = Biaq ... Bomao,, Wherea; = a® with e; € Z. This
defines a new measurg, on X* which is defined as follows. We start a random walk
without backtracking with either or b with equal probability. For the next letter there
are always3 possibilities, each is chosen with probability3. We continue as long as
the random walk contains at madxt. letters from{b, B}. This gives a corresponding
probability onX™ which is concentrated on those words with, = 2m. We denote the

corresponding probability byr,, [- - -]. In order to switch fronPr, ,, [- -] to Pry, [- -]
we consider thdlock structureB(z) of a wordz € {b,b} - X*. We defineB(z) as
the tuple(es, e}, ..., ek, e,) forxz = ﬁflaill e ,jkaz;“ wheree;, e, > 0, with the

exception that possibly, = 0, 3; € {b,b}, anda; € {a,a}.

Let Ekym = {(el, el, ..., ek, €p) ’ Zle e; =2m A Zle el =n— Qm} . For each
¢ € Ey,n, we obtainPr , [B(z) = €] € (22%3~") andPr,, [B(z) = €] € §(22+37™).
In particular, we havg}flféj >k degk’m Pry ,, [B(z) = €] <n2"37" ~ 0 because
k < 2mfore € Ey ,,. MoreoverPrg [x € H | B(x) = €| =Pry, [z € H | B(z) =¢].
Indeed, both values are equal2o?* for e}, > 0 and equal t@' ~2* for ¢}, = 0. This
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yields:

Pry,[r € H] = Z Z Z Pry,[x € HAB(z) = €]
I k

m=[n/4] e€Ex.m

~ Z Z Z Pr,, [z € HA B(x) =¢]
m=Tn/4]  zehnm

= Z Pr, [t € HAJz| =n] < Z Pr,, [z € H]
m=[n/4] m=[n/4]

~ Prr, 41 [v € H] = 0by Lemmal7.

Hence, the proof of Theoreffis reduced to show Lemniz.

From now on we work with the measuyg, and the corresponding probability
Pr, [---] for n > 1. Thus, we may assume that our probability space contains onl
those wordser which haveg-factorizations of the formx = S1aq ... Banae, With
a; € a”. The following result is the main lemma for the analysis & tfeneric case.

Lemma 17. We havePr, [x € H] < (8/9)".

The proof of Lemmal7 is based on a “pairing” with Dyck words: Define a new
alphabetB = {|,]} where| is an opening left-bracket andis the corresponding
closing right-bracket. The set of Dyck word, is the set of words idB2" with correct
bracketing. The number of Dyck words is well-understoodharee| D,,| = 2 (%) <
4™ Thus,|D,| = C,, whereC,, is then-th Catalan number. The connection between
Dyck words and Britton reductions is as follows. Britton wetions are defined for
words {a,a,t,,b,b}" . Consider a3-factorization of the forme = Biau . .. fanan
with o; € a”%. If x € H, then there exists a sequence of Britton reductions which
transformse into = € {a,a, t,i}*. We call such a sequencesaccessful Britton re-
duction Every successful Britton reduction defines in a natural wayyck word by
assigning an opening bracket to positioand a closing bracket to positignf 5;ug;
is replaced by a Britton reduction. Moreover, Britton retituts are confluent o/

In particular, this means that far € H we can start a successful Britton reduction by
replacing all factorg;a® ;41 with 8; = b = ;11 ande € Z by t® wherel < i < 2n.
Thus, if such a successful Britton reduction is described, lifren we may assume that
did;1 = |] whenevep;a®B; 1 = ba®b. Vice versa, ifd;d;, 1 = |], then we must have
Bi = b= pB;11, otherwised is no description of any Britton reduction forat all. Note
that for each with d; = | there is exactly ong¢ which matcheg;. The characterization
of jis thatd,1; - - - d;_1 is a Dyck word andl; = . If d describes a Britton reduction
for z and (i, j) is a matching pair foel then 3,83, = 33 for somes € {b,b}. We
therefore say that andd matchif the following two conditions are satisfied:

1. Foralll <i < 2nwe havedidiﬂ = H — Biﬁi+l =bb. _
2. Foralll <i < j < 2nwhered;d; = |] is a matching pair we havés; = (3.

We define(x, d)s = 1 if  andd match and(z, d)s = 0 otherwise. We refine this
pairing by defining(x, d) = 1if (z, d)s = 1 andd describes a successful Britton
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reduction provinge € H. Otherwise we letz , d) = 0. Clearly,

Pr,[z€ H < Y Pr,[(z,d)=1]. (5)
deD,,

Since|D,,| < 4", the proof of Lemmal7 reduces to show that for evedye D,, we
have
Pr, [(z, d) = 1] < (2/9)". (6)

Lemma 18. Letd € D,, be a Dyck word an& = |{i | d;d;+1 = ||}|. Then we have
Pry, [z, d)g = 1] < (2/3)"*(2/9)".

Proof. Letz be given as itg-factorizationr = 1y, . . ., f2nao,. In order to compute
(x, d)s, we scand = dj - - - day, from left to right withd; € {|]}. We stop at eaclj
whered; = ]. Leti be the corresponding index such tigad; is a matching pair in the
Dyck wordd. We have < j. For fixeds, the probability thap; = 3; depends om;_1,
only. We havePr, [8; = i | ;-1 = 8i] = 1/3 andPr, [B; =B; | Bj—1 = 8] =
2/3. Thus,Pr,, [8; = B;] < 2/3. Moreover, forj = i + 1 we obtainPr, [3; = 3;] =
1/3.Now,Pr, [(x, d)s = 1] implies in addition that fojj = i+ 1 we must haves; = b.
In that case we calculate

PI‘n [ﬁl = b/\BH—l = I_)] = PI’n [Bi-{-l = l_) ‘ ﬁl = b} PI‘n [ﬁl = b] < (1/3) . (2/3)
The result follows. O
Lemma 19. Letd € D,, be a Dyck word an& = |{i | d;d;+1 = |]}|- Then we have

Pr.[(z,d) =1]| (z, d)g =1] < (5/16)" ",

Proof. For real valued random variablés we let || X || = \/Zkez Pr[X = k]°. Let

us consider first an integer valued random variablevhich is given by some word of
the formuBa* 8'v. The distributionPr [X = k] depends o8, 3, only. If 3 = 3’ then

Pr(X = k] = 3. fork € Z.If 8 # ' thenPr[X = 0] = 0 andPr [X = k] = 3 %I
fork # 0. Thus, if 3 = § then|| X||* = 5/16; and if 3 = /' then|| X || = 1/4. Hence:

X% < 5/16. (7)

Next, consider a word of the formga™ g'wg"a¥ Bv with 3, 8', 3" € {b,b} under
the assumption that’'ws3” = (r,m) in Gy where(r,m) € Z[1/2] x Z = H. The
random variableX andY are independent and define another random varizaljleith
values inZ[1/2]) by the equatior{X,0) - (r,m) - (Y,0) = (Z,m) in BS; 2, i.e.,Z =
X +r+42™Y. Hence, fork € Z we obtain

Pr(Z=Fk =Y PriX=iPr[y =2""(k—r—i). (8)
1€EZL

Note thatPr [V = 2™ (k —r — 4)] = 0 unless2=™(k — r — i) € Z. The numbers
m,k,r € Z are fixed an®R~"(k —r — i) = 27"(k — r — j) impliesi = j.
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Thus, we can define a new random variablewith the distributionPr[Y' =i] =
Pr[Y =2 ™(k — r — 4)]. By (8) and Cauchy-Schwarz inequality

Pr(Z =k =Y Pr[X =i Pr[Y’ = i] < | X |Y’]].
1E€EL

Since||Y’|| < ||Y||, we obtainPr [Z = k] < || X]|| ||Y]|. Finally, by (7)
Pr(Z = k] <5/16. 9)

Now, letd = d; - - - d2,, With d; € B be a Dyck word and consider indices: j — 1
such that(s, j) is a matching pair. (This meawsd; = || andd;;---d;_; is a non-
empty Dyck word.) Letr’ = % andd’ = d;41 - - - dj—1. Next, we claim that

Pr, [(z, did'd;) =1 | (y,d)=1Az=byb] <5/16. (20)

Note that (0) refers to the measure,. and thus,z runs over those reduced words
in X with |z[; = 2n’. In order to see this inequality, consider a wéyd such that

(y, d') = 1. The wordy must contain two positions where letters frdi b} appear
becausg > i + 1. Thus, we can writ¢y = ba™ fwj3’a b such that3ws’ = (r,m) in

G 2; and we can read’ andY as integer valued random variables as before. For the
derived random variablg defined byZ = X +r+2™Y we obtainPr [Z = 0] < 5/16

by (9). ButPr [Z = 0] is equal toPr,,/ [<ﬁy3, did'd;) =1 ‘ (y,d)=1ABf3 = Bb}
Hence, the claim. .
The other situation considers words of the farm- byb. Again, we want to show

Pr, [(:c, d;d'd;)y =1 | (y,dy=1nx= byl_)} <5/16. (12)

This is a more complicated situation and we need a case distirabout the structure
of d = d;41---d;—1. We letk denote the index which matchés- 1 and/ matches
the index;j — 1. For (byb, d;d'd;)s = 1, we can writehyb = ba®BuBy"b. (Throughout
we letg € {b,b} andu,v,w,y € X*). But actually more is true. Assume= b then
index: must match index-+ 1, but here we have+ 1 < j, a contradiction. Hence, we
concludes = b. By symmetry, it follows that we can writgyb = ba®bwba’b.

Casek > i + 2. In this case we consider wordgb which can be written asyb =
bacba™ fuB'a¥ bub such thatlba™ fuB'a¥b, diy1 ---di) = 1. This impliespup’ =
(r,0) € Z[1/2] x Z = H andv = (s,q) € H. Here,X andY are random variables
as above. In this settingbyb, d;d;) = 1 forcesZ = OwhereZ = X +r+Y —q.
Inequality Q) yieldsPr[Z = 0] < 5/16. This shows {1) in the caseé > i + 2.

Casel < j — 2. Symmetric to the precedent case.

Casek = i+ 2 and ¢ = j — 2. We claim that this implieg < /. Indeed, assume
¢ < k then we must have+ 1 = ¢ and thereforé + 1 = j — 2. Thus,d’ = d;11d;410.
But then(byb, d; - --d;y3) = 1 impliesbyb = ba®ba™ba’b with m # 0, i.e.,y =
at™af € H with m # 0. A contradiction because fon # 0 we havebyb ¢ H
andd is not successful. Thusg, < k& < ¢ < j. Now, (byb, d;d'd;) = 1 implies
byb = ba®baXbuba¥ ba’b. Again, X andY are random variables as above. ket
(r,m) € Z[1/2] x Z = H.We haveba*Xb = t* andba¥'b = t¥ in Gy 2. Thus,
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Fig. 1. Portion of reduced words € H with |z|; = 2n, samplingl1 - 10° words.

(byb, d;d'd;) = 1impliesZ + m = 0 whereZ = X + Y. With the same arguments
as in Q) we derivePr [Z = —m] < 5/16. This shows {1) in the final casé = i + 2
and/ = j — 2, too.

Now, Lemmal9follows from (L0) and (L1) sincen — k matching pairgi, j) exist
indwithi+1 < j. a

Lemmal8and Lemmal9 enable us to calculater,, [(x, d) = 1] as follows:

Pr,[(z,d) =1 =Pry[(z,d)=1] (xz, d)g =1] - Pr,, [(x, d)g = 1]
< (5/16)"7F - (2/3)"H(2/9)" < (2/9)".

This shows §) and therefore Lemma&7 which in turn implies Theorer6. a

4.2 Computer Experiments

We have conducted computer experiments with a samgle-af)° (i.e., 11 billion) ran-
dom wordsr € X* with 4 < |:1:|B = 2n < 24, see Figurd. Moreover, forn = 14 our
random process did not find a singlee H. The experiments confiridr,, [x € H] = 0.
The initial values seem to suggdat, [x € H] € (0(0.25™). This is much better than
the upper bound of Lemnigr, but our proof used very rough estimationsindnd @),
only. Hence, a difference is no surprise.

5 Back-to-base probability in HNN extensions: Second proodf
Theorem 16

This section has been added to the arXiv version in Novemiibt 2only. The motiva-
tion has been to give an alternative proof of Theof&which uses some known results
from literature. For convenience of the reader there is smredap with material in Sec-
tion4.1 This allows an independentreading. In the following weestigate the general
situation of an HNN extensio@ which is given agy = (H,b | bab~! = ¢(a),a € A)
with a finitely generated base grouip. By the Back-to-base probabilitwe mean the
probability that a random walk in the associated Cayley lgrafpGG ends in the base
group H. In order to make the statement precise we fix the followintathan. We
let H be the base group which is generated by some finite subset H such that
¥ = ¥~1. We use a symmetric set of generators in order to apply Piipog2. (In
fact, Propositior22 is false for non-symmetric generating sets, in general.)é/el
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and B be isomorphic subgroups éf andy : A — B be a fixed isomorphism between
them. Then, as usualy = (H,b|bab~' = ¢(a),a € A) denotes the corresponding
HNN extension ofH with stable letterh. By A we denote the sef\ = £ U {b,b}
whereb = b~!. Thus, the “evaluation of words oveY” defines a monoid presentation
n : A* — G, which is induced by the inclusiod C G. Recall that forz € A* and

a € A we denote byz|, the number of occurrences of the lettein the wordz, and
we let|z|; = [z[, + [z[;. Forz € A* letz € A* denote a Britton-reduced word such
thatn(x) = n(z) in G. Using this notation let us defirfex(| ; by ||z 5 = 7],

For eachn € N we view A™ as a probability space with a uniform distribution.
Thus, we consider random walks in the Cayley grapl&of.r.t. the generating set
where each outgoing edge is chosen with equal probabifitgohtrast to Sectiod.1
random walks may backtrack, i.e., they are not necessadyaed words. We aim to
show the following result.

Theorem 20. LetG = (H,b | bab~' = ¢(a),a € A) be an HNN extension df and
n: A* — G as above. Then we have# H # Bifandonly if{z € A* | n(x) & H}
is strongly generic inA*.

Remark 21.In terms of amenability of Schreier graphs (see egl4) we can restate
Theorem20 as follows: LetG = (H,b | bab~" = ¢(a),a € A) be an HNN extension
of H andn : A* — G as above. The Schreier graphiG, H, A) is non-amenable if
andonly ifA # H # B.

Before we prove Theorer#0 let us show how to derive Theorei® from Theo-
rem20. We use the following two propositions (see alsd]].

Proposition 22 ([5, Prop. 38, Thm. 51]).Let G be a finitely generated group and
H < G be asubgroup. Lej : A* — G, ' : A — G two monoid presentations 6f.
Then,A* \ n~1(H) is strongly generic inA* if and only if A”* \ ’~1(H) is strongly
generic inA’*,

Proposition 23 ([1,6,10)). LetG be a finitely generated group/ < G be a subgroup,
andn : A* — G be a monoid presentation ¢f. Let = be the set of reduced words
of A*. Then,A* \ n~1(H) is a strongly generic inA* if and only if = \ n~(H) is
strongly generic in='.

In order to see Theoret we proceed as follows: Lt denote the set of reduced
words in{a,a,b,b}* andn : {a,a,b,b}* — Gi the canonical presentation. Then
Theorem?20, Proposition22, and Propositior?3 show that= \ n~1(H) is strongly
generic inZ. Now, with the same arguments as in Sectiohit follows that elements
which cannot be conjugated infd form a strongly generic set if.

Now, we turn to the proof of Theoref®. It covers the rest of this section. First, we
considerA = H = B. ThenG is a semidirect produet = H x Z. Letny : G — Z
the projection onto the second component. Then we h@wg < H if and only if
ma(n(x)) = 0. SinceA can be viewed as a constant, it is not hard to see that we have
Prn(z) € H] € ©(1/y/n). (Actually, if |A| is not viewed as a constant we obtain
a more precise estimation. Since the expected valugefgris n/2 |A| one can show

Prn(x) € H] € ©(y/|4] /n). But we do not need this for our purpose.)
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The second case i4 = H # B. For example(7 is the Baumslag-Solitar group
BS; 2. We content ourselves with a lower boundBn[n(z) € H]. We begin with a
the conditional probability:

)

Pr [n(:c) €H ‘ lz]5 = Zm} > m

= m € 9(m71'5). (12)

To see this observe that, duefo= H, a Britton reduction on a word € A* leads
always toH if both, |z|, = |z[; and for every prefixy of = we have|y|, > |yl;.
Thus,n(z) € H as soon as the projection ofonto {b,5}" is a Dyck word. As we
noticed earlier, the number of Dyck words of lengit is them-th Catalan number
—L.(®>™) € ©(m~'%). We obtain a trivial estimatio®r [(z) € H] € 2(n~2?)
which is good enough because it means thatfee H the set{z € A* | n(x) € H}

is not strongly generic im\*. However, using some standard Chernoff bounds and the
fact that the expected value for|; isn/2 |A[, we can state forl = H a more precise
upper and lower bound as follows:

Pr[n(xz) € H] € O(VIA] /n) 0 2((|1A] /n)"?). (13)

Finally, let us consider the most interesting case4 H # B. This is the situation
e.g. in the Baumslag grou@, ». In order to finish the proof of Theore0 we have
to showPr [n(z) € H| ~ 0. This covers the rest of this section. As we have done in
Section4 we switch the probability space. We embéd into the spaceA* with a
measureuo,, on A* which concentrates its mass aki” (i.e., po,,(A™) = 1) with
corresponding probabilityr, ,, [- - -]. We now have to show th&tr, ,, [n(x) € H] = 0

if A+ H #+ B. Letpu,, be the measure od* which is defined by reading letters
from A each with equal probability as long as the random walk castai mosin
lettersss € {b, 1_7}. This gives a corresponding probability ati which is concentrated
on those words witlw|; = m. We denote the corresponding probability Ry, [- - .
Still there is a close connection between these probaslitn particular:

Pro. [Joly =m] = (1) - /140" - (12718 =P, [l =n]  14)
Pros [n(@) € H | [al; =m] = Prun@) € H | [z] =] (15)

SincePry ,, [|:c|6 = m} ~ 0form < n/|A|we can perform a similar computation
as in Sectiort.1:

Pro,, () € H] = Y Pro, [n(@) € H A Jo]y =m]
m=0

Q

Z Prg, [77(:17) €HA|z|; = m}
m=[n/|A[]

> Prow [n@) | lely =m] - Pro,, [lal, =m]
m=[n/|A[]
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Y. Prun() € H | |z =n] Prylz] = n]
m=[n/|A[]

Z Pr, [n(x) € H A |z] =n]
m=[n/|A[]

< Z Pr,, [n(x) € H].
m=[n/|Al]

Therefore, it is enough to show thRt,, [n(x) € H] ~ 0 as a function inn.

There is also a natural probability distribution &atf which is formally defined by
to (N.B. uo is different frompy ,,!) Indeed, we have,(X*) = 1 and the distribution
on X* is given by a random walk which stops with probability|A| and, if it does not
stop, then it chooses the next letter with equal probabllityorder to emphasize that
the mass ofi is on Z* we also writePrx; [y] = Pr [y] fory € X*.

Lemma 24. Forall v € ¥* andj € {b,b} we have

Pry [77(5795) ¢ H} > W

Proof. By symmetry we may assunfe= b. We have to show tha@tr s [n(yy) ¢ A] >
2/|A]*. We consider the casegy) ¢ A andr(y) € A separately. Fon(y) ¢ A we
obtain

Prs[n(yy) ¢ Al > Prsy =1] = 2/ |A] > 2/|A

Forn(vy) € Aanda € X we obtainn(vya) € Aif and only if(a) ¢ A. SinceA # H
and X generated], there must be some lettere X with n(a) ¢ A. Therefore, in the
second case

Prs [n(vy) ¢ Al > Prs |y = a] = 2/|A[.
O

As before a3-factorization ofz € A* with |z|; = m is written as a word: =
Y0B171 - - - Bmym Such that3; € {b,b} andy; € X~ for 1 < i < m. Using the notion
of g-factorization we define for ald < ¢ < m a random variableX, : A* — N
as follows. We letX,(z) = [|705171 - - . Bevell 5 Another way to explain¥,(z) is as
follows. Choose any prefix of = such thaiz|, = ¢, compute the Britton reductioh
of z and letX,(x) = |z|4, .., X¢(2) = [|z]| 5. The differenced; = X; — X;_; define

random variable¥; for 1 < i < m with values in{—1, 1}. Clearly,X, = Zle Y; for
all 0 < ¢ < m. Note thatX, = 0 andX; = Y; = 1 are constant functions.

Consider gs-factorizationz = 5171 - - - Bmym fOr x with |:1:|B =m. Forl <
i < m letz;_; be Britton-reduced such thatz;—1) = n(70051 . . . vi—26i—1). Then the
j-factorization ofz;_; becomesy; 317, . .. 37} for somej < i — 1. Note that the last
factory; can be, a priori, any word i&™*. Now, it depends only on the factosé; and
~;—13; whether or not thg-length of the Britton-reduced word increases or decreases
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when reading the next factey_; 5;. The probability for that is described by the random
variableY;. For alle € {—1,1}*~! Lemma24 shows

PrY,=1|Y;=¢;forj<i>1/2+1/2-2/|A° =1/2+1/|A*.  (16)

Let{Z;| :=1,...,m} be a set ofn independent random variables taking values in
{—1,1} such thatPr [Z; = 1] = 1/2 4+ 1/ |A]* for 1 < i < m. By (16) it follows that
for everye = (g;) € {—1, 1}*"" and1 < k < m we have

Pro,[Ya = —1]Y; =¢; Vj <k] <Pr[Z, = —1]. (17)

This observation is crucial in the proof of the next lemma.

4 m/2
Prp (X =0/<[1-—)
14|

Proof. The assertion is trivial fom = 0 or m odd. Hence, letn > 2 be even. First, let
us show thatforalh € Z, 1 < k < ¢ < m, ande = (¢;) € {—1,1}*~! we have

Lemma 25. We have

14 14
Pry |y Yi<p Yj—ajvwk]SPrm > Zi<p|. (18)
i=k i=k
We prove (8) by induction onk — ¢. The case = k is trivial, hence let < k.
4
Pr, Y Yi<p szgjvy'<k]
i=k
4
= > PrpYi=e|Yi=¢g;Vj<kl-Pr,| > Yi<p-—ck Yj:gngkl
ep==1 1=k+1
4
< Y PralVi=eu|Yi=¢;¥j <k Pro| > Zigp—sk]
ep==1 i=k+1
14 14
< Y ProZp =ei] Pry, l Y Zi<p—er| =Prn |Y_ Zi<p|.
er==%1 i=k+1 i=k

We have to explain the inequality leading to the last linevab®y (17) there is some
de1 > 0 such thafPr,, [V, = —1| Y; =€, Vj < k] + 6.5 = Pry, [Zx = —1]. Thus,
by definition,Pr,, [V = 1| Y; =¢; Vj < k] — 6. x = Pr,, [Zx = 1]. Hence, the in-
equality follows fromPr,,, [Zfzkﬂ Z; <p— 1} < Pr,, {Zf:kﬂ Z; <p+ 1}.

As a special case fér = 1 and/ = m we obtain

m

d vi<p

i=1

Pr,, [Xm < p] = Pryy < Pr,, . (29)

m
ZZi <p
i1
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In order to prove the lemma it is enough to consiger 0. We get

= Z H Pr [Zl = Ei]

e=(e;)e{—1,1}™ =1
[{3] <5=1}|sm/2

m/2 m/2 m/2
cgm (11 ” L1 o L4 !
a 2 |ap 2 |af A" '

O

m

> Zi<0

i=1

Pr, [X;m = 0] < Pr

Hence, we have concluded the proof of Theorgirbecause Lemmas implies in
particularPr,, [X,, = 0] = 0.

Conclusion

We have investigated the complexity of the conjugacy probitetwo important groups

in combinatorial group theory. The conjugacy problenB8;  is TC%complete. If
division in power circuits is non-elementary in the worsteahen the conjugacy prob-
lem in G » is non-elementary on the average, but solvabl®im?) on a strongly
generic subset. This is a striking contrast underlying thpartance of generic case
complexity on natural examples. In order to derive the tesobut generic case com-
plexity, we proved a more general result about HNN exterssigve showed that =
(H,b|bab~! = ¢(a),a € A) has a non-amenable Schreier graph with respect to the
base grougd ifand only if A = H # B.
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