Abstract
Consider a sliding camera that travels back and forth along an orthogonal line segment s inside an orthogonal polygon P with n vertices. The camera can see a point p inside P if and only if there exists a line segment containing p that crosses s at a right angle and is completely contained in P. In the minimum sliding cameras (MSC) problem, the objective is to guard P with the minimum number of sliding cameras. In this paper, we give an O(n 5/2)-time (7/2)-approximation algorithm to the MSC problem on any simple orthogonal polygon with n vertices, answering a question posed by Katz and Morgenstern (2011). To the best of our knowledge, this is the first constant-factor approximation algorithm for this problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Biedl, T.C., Irfan, M.T., Iwerks, J., Kim, J., Mitchell, J.S.B.: The art gallery theorem for polyominoes. Disc. & Comp. Geom. 48(3), 711–720 (2012)
Chvátal, V.: A combinatorial theorem in plane geometry. J. Comb. Theory, Ser. B 18, 39–41 (1975)
Durocher, S., Mehrabi, S.: Guarding orthogonal art galleries using sliding cameras: Algorithmic and hardness results. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013. LNCS, vol. 8087, pp. 314–324. Springer, Heidelberg (2013)
Kahn, J., Klawe, M.M., Kleitman, D.J.: Traditional galleries require fewer watchmen. SIAM J. on Algebraic Disc. Methods 4(2), 194–206 (1983)
Katz, M.J., Mitchell, J.S.B., Nir, Y.: Orthogonal segment stabbing. Comp. Geom. 30(2), 197–205 (2005)
Katz, M.J., Morgenstern, G.: Guarding orthogonal art galleries with sliding cameras. Int. J. of Comp. Geom. & App. 21(2), 241–250 (2011)
Kosowski, A., Malafiejski, M., Zylinski, P.: Weakly cooperative mobile guards in grids. In: Proc. JCDCG, pp. 83–84 (2004)
Kosowski, A., Małafiejski, M., Żyliński, P.: An efficient algorithm for mobile guarded guards in simple grids. In: Gavrilova, M.L., Gervasi, O., Kumar, V., Tan, C.J.K., Taniar, D., Laganá, A., Mun, Y., Choo, H. (eds.) ICCSA 2006, Part I. LNCS, vol. 3980, pp. 141–150. Springer, Heidelberg (2006)
Lee, D.T., Lin, A.K.: Computational complexity of art gallery problems. IEEE Trans. on Info. Theory 32(2), 276–282 (1986)
Małafiejski, M., Żyliński, P.: Weakly cooperative guards in grids. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005, Part I. LNCS, vol. 3480, pp. 647–656. Springer, Heidelberg (2005)
Micali, S., Vazirani, V.V.: An \({O}(\sqrt{\lvert v\rvert} \lvert{E}\rvert)\) algorithm for finding maximum matching in general graphs. In: Proc. FOCS, pp. 17–27 (1980)
Ntafos, S.C.: On gallery watchmen in grids. Info. Process. Lett. 23(2), 99–102 (1986)
O’Rourke, J.: Art gallery theorems and algorithms. Oxford University Press, Inc., New York (1987)
Schuchardt, D., Hecker, H.: Two NP-hard art-gallery problems for ortho-polygons. Math. Logic Quarterly 41(2), 261–267 (1995)
Urrutia, J.: Art gallery and illumination problems. In: Handbook of Comp. Geom., pp. 973–1027. North-Holland (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Durocher, S., Filtser, O., Fraser, R., Mehrabi, A.D., Mehrabi, S. (2014). A (7/2)-Approximation Algorithm for Guarding Orthogonal Art Galleries with Sliding Cameras. In: Pardo, A., Viola, A. (eds) LATIN 2014: Theoretical Informatics. LATIN 2014. Lecture Notes in Computer Science, vol 8392. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54423-1_26
Download citation
DOI: https://doi.org/10.1007/978-3-642-54423-1_26
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-54422-4
Online ISBN: 978-3-642-54423-1
eBook Packages: Computer ScienceComputer Science (R0)