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Abstract

In the classical experimental design setting, an experimenter E has access to
a population of n potential experiment subjects i ∈ {1, . . . , n}, each associated
with a vector of features xi ∈ R

d. Conducting an experiment with subject i
reveals an unknown value yi ∈ R to E. E typically assumes some hypotheti-
cal relationship between xi’s and yi’s, e.g., yi ≈ βTxi, and estimates β from
experiments, e.g., through linear regression. As a proxy for various practical
constraints, E may select only a subset of subjects on which to conduct the
experiment.

We initiate the study of budgeted mechanisms for experimental design. In
this setting, E has a budget B. Each subject i declares an associated cost
ci > 0 to be part of the experiment, and must be paid at least her cost. In
particular, the Experimental Design Problem (EDP) is to find a set S of subjects
for the experiment that maximizes V (S) = log det(Id +

∑

i∈S
xix

T
i ) under the

constraint
∑

i∈S
ci ≤ B; our objective function corresponds to the information

gain in parameter β that is learned through linear regression methods, and
is related to the so-called D-optimality criterion. Further, the subjects are
strategic and may lie about their costs. Thus, we need to design a mechanism
for EDP with suitable properties.

We present a deterministic, polynomial time, budget feasible mechanism
scheme, that is approximately truthful and yields a constant (≈ 12.98) factor
approximation to EDP. By applying previous work on budget feasible mech-
anisms with a submodular objective, one could only have derived either an
exponential time deterministic mechanism or a randomized polynomial time
mechanism. We also establish that no truthful, budget-feasible mechanism is
possible within a factor 2 approximation, and show how to generalize our ap-
proach to a wide class of learning problems, beyond linear regression.

http://arxiv.org/abs/1302.5724v4


1 Introduction

In the classic setting of experimental design [26, 4], an experimenter E has access
to a population of n potential experiment subjects. Each subject i ∈ {1, . . . , n} is
associated with a set of parameters (or features) xi ∈ R

d, known to the experimenter.
E wishes to measure a certain inherent property of the subjects by performing an
experiment: the outcome yi of the experiment on a subject i is unknown to E before
the experiment is performed.

Typically, E has a hypothesis on the relationship between xi’s and yi’s. Due to
its simplicity, as well as its ubiquity in statistical analysis, a large body of work has
focused on linear hypotheses: i.e., it is assumed that there exists a β ∈ R

d such that

yi = βTxi + εi,

for all i ∈ {1, . . . , n}, where εi are zero-mean, i.i.d. random variables. Conducting
the experiments and obtaining the measurements yi lets E estimate β, e.g., through
linear regression.

The above experimental design scenario has many applications. Regression over
personal data collected through surveys or experimentation is the cornerstone of
marketing research, as well as research in a variety of experimental sciences such as
medicine and sociology. Crucially, statistical analysis of user data is also a widely
spread practice among Internet companies, which routinely use machine learning
techniques over vast records of user data to perform inference and classification tasks
integral to their daily operations. Beyond linear regression, there is a rich literature
about estimation procedures, as well as about means of quantifying the quality of the
produced estimate [26]. There is also an extensive theory on how to select subjects
if E can conduct only a limited number of experiments, so the estimation process
returns a β that approximates the true parameter of the underlying population
[16, 21, 10, 7].

We depart from this classical setup by viewing experimental design in a strate-
gic setting, and by studying budgeted mechanism design issues. In our setting,
experiments cannot be manipulated and hence measurements are reliable. E has
a total budget of B to conduct all the experiments. There is a cost ci associated
with experimenting on subject i which varies from subject to subject. This cost ci
is determined by the subject i and reported to E; subjects are strategic and may
misreport these costs. Intuitively, ci may be viewed as the cost i incurs when tested
and for which she needs to be reimbursed; or, it might be viewed as the incentive
for i to participate in the experiment; or, it might be the intrinsic worth of the data
to the subject. The economic aspect of paying subjects has always been inherent
in experimental design: experimenters often work within strict budgets and design
creative incentives. Subjects often negotiate better incentives or higher payments.
However, we are not aware of a principled study of this setting from a strategic point
of view, when subjects declare their costs and therefore determine their payment.
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Such a setting is increasingly realistic, given the growth of these experiments over
the Internet.

Our contributions are as follows.

• We initiate the study of experimental design in the presence of a budget and
strategic subjects. In particular, we formulate the Experimental Design Prob-
lem (EDP) as follows: the experimenter E wishes to find a set S of subjects to
maximize

V (S) = log det
(

Id +
∑

i∈S
xix

T
i

)

(1)

subject to a budget constraint
∑

i∈S ci ≤ B, where B is E’s budget. When
subjects are strategic, the above problem can be naturally approached as a
budget feasible mechanism design problem, as introduced by Singer [29].

The objective function, which is the key, is formally obtained by optimizing
the information gain in β when the latter is learned through ridge regression,
and is related to the so-called D-optimality criterion [26, 4].

• We present a polynomial time mechanism scheme for EDP that is approxi-
mately truthful and yields a constant factor (≈ 12.98) approximation to the
optimal value of (1). In contrast to this, we show that no truthful, budget-
feasible mechanisms are possible for EDP within a factor 2 approximation.

We note that the objective (1) is submodular. Using this fact, applying pre-
vious results on budget feasible mechanism design under general submodu-
lar objectives [29, 11] would yield either a deterministic, truthful, constant-
approximation mechanism that requires exponential time, or a non-determi-
nistic, (universally) truthful, poly-time mechanism that yields a constant ap-
proximation ratio only in expectation (i.e., its approximation guarantee for a
given instance may in fact be unbounded).

From a technical perspective, we propose a convex optimization problem and
establish that its optimal value is within a constant factor from the optimal value
of EDP. In particular, we show our relaxed objective is within a constant factor
from the so-called multi-linear extension of (1), which in turn can be related to
(1) through pipage rounding. We establish the constant factor to the multi-linear
extension by bounding the partial derivatives of these two functions; we achieve the
latter by exploiting convexity properties of matrix functions over the convex cone
of positive semidefinite matrices.

Our convex relaxation of EDP involves maximizing a self-concordant function
subject to linear constraints. Its optimal value can be computed with arbitrary
accuracy in polynomial time using the so-called barrier method. However, the out-
come of this computation may not necessarily be monotone, a property needed in

2



designing a truthful mechanism. Nevetheless, we construct an algorithm that solves
the above convex relaxation and is “almost” monotone; we achieve this by apply-
ing the barrier method on a set perturbed constraints, over which our objective is
“sufficiently” concave. In turn, we show how to employ this algorithm to design a
poly-time, δ-truthful, constant-approximation mechanism for EDP.

In what follows, we describe related work in Section 2. We briefly review experi-
mental design and budget feasible mechanisms in Section 3 and define EDP formally.
We present our convex relaxation to EDP in Section 4 and use it to construct our
mechanism in Section 5. We conclude in Section 6. All proofs of our technical
results are provided in the appendix.

2 Related work

Budget Feasible Mechanisms for General Submodular Functions Budget
feasible mechanism design was originally proposed by Singer [29]. Singer considers
the problem of maximizing an arbitrary submodular function subject to a budget
constraint in the value query model, i.e. assuming an oracle providing the value
of the submodular objective on any given set. Singer shows that there exists a
randomized, 112-approximation mechanism for submodular maximization that is
universally truthful (i.e., it is a randomized mechanism sampled from a distribution
over truthful mechanisms). Chen et al. [11] improve this result by providing a
7.91-approximate mechanism, and show a corresponding lower bound of 2 among
universally truthful randomized mechanisms for submodular maximization.

The above approximation guarantees hold for the expected value of the ran-
domized mechanism: for a given instance, the approximation ratio provided by the
mechanism may in fact be unbounded. No deterministic, truthful, constant approxi-
mation mechanism that runs in polynomial time is presently known for submodular
maximization. However, assuming access to an oracle providing the optimum in
the full-information setup, Chen et al., propose a truthful, 8.34-approximate mech-
anism; in cases for which the full information problem is NP-hard, as the one we
consider here, this mechanism is not poly-time, unless P=NP. Chen et al. also prove
a 1 +

√
2 lower bound for truthful deterministic mechanisms, improving upon an

earlier bound of 2 by Singer [29].

Budget Feasible Mechanisms on Specific Problems Improved bounds, as
well as deterministic polynomial mechanisms, are known for specific submodular
objectives. For symmetric submodular functions, a truthful mechanism with ap-
proximation ratio 2 is known, and this ratio is tight [29]. Singer also provides a
7.32-approximate truthful mechanism for the budget feasible version of Matching,
and a corresponding lower bound of 2 [29]. Improving an earlier result by Singer,
Chen et al. [11] give a truthful, 2+

√
2-approximate mechanism for Knapsack, and
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a lower bound of 1 +
√
2. Finally, a truthful, 31-approximate mechanism is also

known for the budgeted version of Coverage [30].
The deterministic mechanisms for Knapsack [11] and Coverage [30] follow

the same general framework, which we also employ in our mechanism for EDP. We
describe this framework in detail in Section 5. Both of these mechanisms rely on
approximating the optimal solution to the underlying combinatorial problem by a
well-known linear program (LP) relaxation [1], which can be solved exactly in poly-
nomial time. No such relaxation exists for EDP, which unlikely to be approximable
through an LP due to its logarithmic objective. We develop instead a convex relax-
ation to EDP; though, contrary to the above LP relaxations, this cannot be solved
exactly, we establish that it can be incorporated in the framework of [11, 30] to yield
a δ-truthful mechanism for EDP.

Beyond Submodular Objectives Beyond submodular objectives, it is known
that no truthful mechanism with approximation ratio smaller than n1/2−ε exists
for maximizing fractionally subadditive functions (a class that includes submodu-
lar functions) assuming access to a value query oracle [29]. Assuming access to a
stronger oracle (the demand oracle), there exists a truthful, O(log3 n)-approximate
mechanism [12] as well as a universally truthful, O( logn

log logn)-approximate mecha-
nism for subadditive maximization [6]. Moreover, in a Bayesian setup, assuming a
prior distribution among the agent’s costs, there exists a truthful mechanism with a
768/512-approximation ratio [6]. Posted price, rather than direct revelation mech-
anisms, are also studied in [5].

Monotone Approximations in Combinatorial Auctions Relaxations of com-
binatorial problems are prevalent in combinatorial auctions, in which an auctioneer
aims at maximizing a set function which is the sum of utilities of strategic bid-
ders (i.e., the social welfare). As noted by Archer et al. [3], approximations to
this maximization must preserve incentive compatibility and truthfulness. Most ap-
proximation algorithms do not preserve these properties, hence specific relaxations,
and corresponding roundings to an integral solution, must be constructed. Archer
et al. [3] propose a randomized rounding of the LP relaxation of the SetPacking

problem, yielding a mechanism which is truthful-in-expectation. Lavi and Swamy
[20] construct randomized truthful-in-expectation mechanisms for several combina-
torial auctions, improving the approximation ratio in [3], by treating the fractional
solution of an LP as a probability distribution from which they sample integral
solutions.

Beyond LP relaxations, Dughmi et al. [14] propose truthful-in-expectation mech-
anisms for combinatorial auctions in which the bidders’ utilities are matroid rank
sum functions (applied earlier to the CombinatorialPublicProjects problem
[13]). Their framework relies on solving a convex optimization problem which can
only be solved approximately. As in [20], they also treat the fractional solution as
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a distribution over which they sample integral solutions. The authors ensure that
a solver is applied to a “well-conditioned” problem, which resembles the technical
challenge we face in Section 4.2. However, we seek a deterministic mechanism and
δ-truthfulness, not truthfulness-in-expectation. In addition, our objective is not a
matroid rank sum function. As such, both the methodology for dealing with prob-
lems that are not “well-conditioned” as well as the approximation guarantees of the
convex relaxation in [14] do not readily extend to EDP.

Briest et al. [8] construct monotone FPTAS for problems that can be approxi-
mated through rounding techniques, which in turn can be used to construct truthful,
deterministic, constant-approximation mechanisms for corresponding combinatorial
auctions. EDP is not readily approximable through such rounding techniques; as
such, we rely on a relaxation to approximate it.

δ-Truthfulness and Differential Privacy The notion of δ-truthfulness has at-
tracted considerable attention recently in the context of differential privacy (see,
e.g., the survey by Pai and Roth [25]). McSherry and Talwar [22] were the first
to observe that any ε-differentially private mechanism must also be δ-truthful in
expectation, for δ = 2ε. This property was used to construct δ-truthful (in expecta-
tion) mechanisms for a digital goods auction [22] and for α-approximate equilibrium
selection [17]. Nissim et al. [24] propose a framework for converting a differentially
private mechanism to a truthful-in-expectation mechanism by randomly selecting
between a differentially private mechanism with good approximation guarantees,
and a truthful mechanism. They apply their framework to the FacilityLocation

problem. We depart from the above works in seeking a deterministic mechanism for
EDP, and using a stronger notion of δ-truthfulness.

3 Preliminaries

3.1 Linear Regression and Experimental Design

The theory of experimental design [26, 4, 10] considers the following formal setting.
Suppose that an experimenter E wishes to conduct k among n possible experiments.
Each experiment i ∈ N ≡ {1, . . . , n} is associated with a set of parameters (or
features) xi ∈ R

d, normalized so that

b ≤ ‖xi‖22 ≤ 1,

for some b > 0. Denote by S ⊆ N , where |S| = k, the set of experiments selected;
upon its execution, experiment i ∈ S reveals an output variable (the “measure-
ment”) yi, related to the experiment features xi through a linear function, i.e.,

∀i ∈ N , yi = βTxi + εi (2)
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where β is a vector in R
d, commonly referred to as the model, and εi (the measure-

ment noise) are independent, normally distributed random variables with mean 0
and variance σ2.

For example, each i may correspond to a human subject; the feature vector xi
may correspond to a normalized vector of her age, weight, gender, income, etc.,
and the measurement yi may capture some biometric information (e.g., her red cell
blood count, a genetic marker, etc.). The magnitude of the coefficient βi captures
the effect that feature i has on the measured variable, and its sign captures whether
the correlation is positive or negative.

The purpose of these experiments is to allow E to estimate the model β. In
particular, assume that the experimenter E has a prior distribution on β, i.e., β has
a multivariate normal prior with zero mean and covariance σ2R−1 ∈ R

d2 (where σ2 is
the noise variance). Then, E estimates β through maximum a posteriori estimation:
i.e., finding the parameter which maximizes the posterior distribution of β given
the observations yS. Under the linearity assumption (2) and the Gaussian prior on
β, maximum a posteriori estimation leads to the following maximization [15]:

β̂ = argmax
β∈Rd

Pr(β | yS) = argmin
β∈Rd

(

∑

i∈S
(yi − βTxi)

2 + βTRβ
)

= (R+XT
S XS)

−1XT
S yS

(3)

where the last equality is obtained by setting ∇βPr(β | yS) to zero and solving the
resulting linear system; in (3), XS ≡ [xi]i∈S ∈ R

|S|×d is the matrix of experiment
features and yS ≡ [yi]i∈S ∈ R

|S| are the observed measurements. This optimization,
commonly known as ridge regression, includes an additional quadratic penalty term
βTRβ compared to the standard least squares estimation.

Let V : 2N → R be a value function, quantifying how informative a set of ex-
periments S is in estimating β. The classical experimental design problem amounts
to finding a set S that maximizes V (S) subject to the constraint |S| ≤ k. A vari-
ety of different value functions are used in literature [26, 7]; one that has natural
advantages is the information gain:

V (S) = I(β; yS) = H(β)−H(β | yS). (4)

which is the entropy reduction on β after the revelation of yS (also known as the
mutual information between yS and β). Hence, selecting a set of experiments S that
maximizes V (S) is equivalent to finding the set of experiments that minimizes the
uncertainty on β, as captured by the entropy reduction of its estimator. Under the
linear model (2), and the Gaussian prior, the information gain takes the following
form (see, e.g., [10]):

I(β; yS) =
1

2
log det(R+XT

S XS)−
1

2
log detR (5)
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Maximizing I(β; yS) is therefore equivalent to maximizing log det(R+XT
S XS), which

is known in the experimental design literature as the Bayes D-optimality criterion
[26, 4, 10].

Our analysis will focus on the case of a homotropic prior, in which the prior
covariance is the identity matrix, i.e., R = Id ∈ R

d×d. Intuitively, this corresponds
to the simplest prior, in which no direction of Rd is a priori favored; equivalently,
it also corresponds to the case where ridge regression estimation (3) performed by
E has a penalty term ‖β‖22. A generalization of our results to arbitrary covariance
matrices R can be found in Appendix H.

3.2 Budget-Feasible Experimental Design: Full Information Case

Instead of the cardinality constraint in classical experimental design discussed above,
we consider a budget-constrained version. Each experiment is associated with a cost
ci ∈ R+. The cost ci can capture, e.g., the amount the subject i deems sufficient
to incentivize her participation in the experiment. The experimenter E is limited
by a budget B ∈ R+. In the full-information case, experiment costs are common
knowledge; as such, the experimenter wishes to solve:

ExperimentalDesignProblem (EDP)

Maximize V (S) = log det(Id +XT
SXS) (6a)

subject to
∑

i∈S
ci ≤ B (6b)

W.l.o.g., we assume that ci ∈ [0, B] for all i ∈ N , as no i with ci > B can be in an
S satisfying (6b). Denote by

OPT = max
S⊆N

{

V (S)
∣

∣

∣

∑

i∈S
ci ≤ B

}

(7)

the optimal value achievable in the full-information case. EDP, as defined above, is
NP-hard; to see this, note that Knapsack reduces to EDP with dimension d = 1
by mapping the weight of each item, say, wi, to an experiment with x2i = wi.

The value function (6a) has the following properties, which are proved in Ap-
pendix A. First, it is non-negative, i.e., V (S) ≥ 0 for all S ⊆ N . Second, it is
also monotone, i.e., V (S) ≤ V (T ) for all S ⊆ T , with V (∅) = 0. Finally, it is
submodular, i.e., V (S ∪ {i}) − V (S) ≥ V (T ∪ {i}) − V (T ) for all S ⊆ T ⊆ N and
i ∈ N . The above imply that a greedy algorithm yields a constant approximation
ratio to EDP. In particular, consider the greedy algorithm in which, for S ⊆ N the
set constructed thus far, the next element i included is the one which maximizes
the marginal-value-per-cost, i.e., i = argmaxj∈N\S (V (S ∪ {i}) − V (S))/ci. This is
repeated until adding an element in S exceeds the budget B. Denote by SG the
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set constructed by this heuristic and let i∗ = argmaxi∈N V ({i}) be the element of
maximum singleton value. Then, the following algorithm:

if V ({i∗}) ≥ V (SG) return {i∗} else return SG (8)

yields an approximation ratio of 5e
e−1 [29]; this can be further improved to e

e−1 using
more complicated greedy set constructions [18, 31].

3.3 Budget-Feasible Experimental Design: Strategic Case

We study the following strategic setting, in which the costs ci are not common
knowledge and their reporting can be manipulated by the experiment subjects. The
latter are strategic and wish to maximize their utility, which is the difference of
the payment they receive and their true cost. We note that, though subjects may
misreport ci, they cannot lie about xi (i.e., all public features are verifiable prior
to the experiment) nor yi (i.e., the subject cannot falsify her measurement). In
this setting, experimental design reduces to a budget feasible reverse auction, as
introduced by Singer [29]; we review the formal definition in Appendix D. In short,
given a budget B and a value function V : 2N → R+, a reverse auction mechanism
M = (S, p) comprises (a) an allocation function1 S : Rn

+ → 2N , determining the
set of experiments to be purchased, and (b) a payment function p : Rn

+ → R
n
+,

determining the payments [pi(c)]i∈N received by experiment subjects.
We seek mechanisms that are normalized (unallocated experiments receive zero

payments), individually rational (payments for allocated experiments exceed costs),
have no positive transfers (payments are non-negative), and are budget feasible (the
sum of payments does not exceed the budget B). We relax the notion of truthfulness
to δ-truthfulness, requiring that reporting one’s true cost is an almost-dominant
strategy: no subject increases their utility by reporting a cost that differs more
than δ > 0 from their true cost. Under this definition, a mechanism is truthful
if δ = 0. In addition, we would like the allocation S(c) to be of maximal value;
however, δ-truthfulness, as well as the hardness of EDP, preclude achieving this
goal. Hence, we seek mechanisms with that are (α, β)-approximate, i.e., there exist
α ≥ 1 and β > 0 s.t. OPT ≤ αV (S(c)) + β, and are computationally efficient, in
that S and p can be computed in polynomial time.

We note that the constant approximation algorithm (8) breaks truthfulness.
Though this is not true for all submodular functions (see, e.g., [29]), it is true for
the objective of EDP: we show this in Appendix I. This motivates our study of more
complex mechanisms.

1Note that S would be more aptly termed as a selection function, as this is a reverse auction,

but we retain the term “allocation” to align with the familiar term from standard auctions.
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4 Approximation Results

Previous approaches towards designing truthful, budget feasible mechanisms for
Knapsack [11] and Coverage [30] build upon polynomial-time algorithms that
compute an approximation of OPT , the optimal value in the full information case.
Crucially, to be used in designing a truthful mechanism, such algorithms need also
to be monotone, in the sense that decreasing any cost ci leads to an increase in the
estimation of OPT ; the monotonicity property precludes using traditional approxi-
mation algorithms.

In the first part of this section, we address this issue by designing a convex
relaxation of EDP, and showing that its solution can be used to approximate OPT .
The objective of this relaxation is concave and self-concordant [7] and, as such,
there exists an algorithm that solves this relaxed problem with arbitrary accuracy in
polynomial time. Unfortunately, the output of this algorithm may not necessarily be
monotone. Nevertheless, in the second part of this section, we show that a solver of
the relaxed problem can be used to construct a solver that is “almost” monotone. In
Section 5, we show that this algorithm can be used to design a δ-truthful mechanism
for EDP.

4.1 A Convex Relaxation of EDP

A classical way of relaxing combinatorial optimization problems is relaxing by ex-
pectation, using the so-called multi-linear extension of the objective function V (see,
e.g., [9, 34, 14]). This is because this extension can yield approximation guarantees
for a wide class of combinatorial problems through pipage rounding, a technique pro-
posed by Ageev and Sviridenko [1]. Crucially for our purposes, such relaxations in
general preserve monotonicity which, as discussed, is required in mechanism design.

Formally, let P λ
N be a probability distribution over N parametrized by λ ∈ [0, 1]n,

where a set S ⊆ N sampled from P λ
N is constructed as follows: each i ∈ N is selected

to be in S independently with probability λi, i.e., P
λ
N (S) ≡∏i∈S λi

∏

i∈N\S(1−λi).
Then, the multi-linear extension F : [0, 1]n → R of V is defined as the expectation
of V under the distribution P λ

N :

F (λ) ≡ ES∼Pλ
N

[

V (S)
]

= ES∼Pλ
N

[

log det

(

Id +
∑

i∈S
xix

T
i

)]

, λ ∈ [0, 1]n. (9)

Function F is an extension of V to the domain [0, 1]n, as it equals V on integer
inputs: F (1S) = V (S) for all S ⊆ N , where 1S denotes the indicator vector of S.
Contrary to problems such as Knapsack, the multi-linear extension (9) cannot be
optimized in polynomial time for the value function V we study here, given by (6a).
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Hence, we introduce an extension L : [0, 1]n → R s.t.

L(λ) ≡ log det

(

Id +
∑

i∈N
λixix

T
i

)

= log det

(

ES∼Pλ
N

[

Id +
∑

i∈S
xix

T
i

]

)

, λ ∈ [0, 1]n

(10)

Note that L also extends V , and follows naturally from the multi-linear extension
by swapping the expectation and log det in (9). Crucially, it is strictly concave on
[0, 1]n, a fact that we exploit in the next section to maximize L subject to the budget
constraint in polynomial time.

Our first technical lemma relates the concave extension L to the multi-linear
extension F :

Lemma 1. For all λ ∈ [0, 1]n, 1
2 L(λ) ≤ F (λ) ≤ L(λ).

The proof of this lemma can be found in Appendix B.1. In short, exploiting the
concavity of the log det function over the set of positive semi-definite matrices, we
first bound the ratio of all partial derivatives of F and L. We then show that the
bound on the ratio of the derivatives also implies a bound on the ratio F/L.

Armed with this result, we subsequently use pipage rounding to show that any λ
that maximizes the multi-linear extension F can be rounded to an “almost” integral
solution. More specifically, given a set of costs c ∈ R

n
+, we say that a λ ∈ [0, 1]n is

feasible if it belongs to the set

Dc = {λ ∈ [0, 1]n :
∑

i∈N
ciλi ≤ B}. (11)

Then, the following lemma holds:

Lemma 2 (Rounding). For any feasible λ ∈ Dc, there exists a feasible λ̄ ∈ Dc such
that (a) F (λ) ≤ F (λ̄), and (b) at most one of the coordinates of λ̄ is fractional.

The proof of this lemma is in Appendix B.2, and follows the main steps of
the pipage rounding method of Ageev and Sviridenko [1]. Together, Lemma 1 and
Lemma 2 imply that OPT , the optimal value of EDP, can be approximated by
solving the following convex optimization problem:

Maximize: L(λ)

subject to: λ ∈ Dc
(Pc)

In particular, for L∗
c ≡ maxλ∈Dc

L(λ) the optimal value of (Pc), the following holds:

Proposition 1. OPT ≤ L∗
c ≤ 2OPT + 2maxi∈N V (i).
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The proof of this proposition can be found in Appendix B.3. As we discuss in the
next section, L∗

c can be computed by a poly-time algorithm at arbitrary accuracy.
However, the outcome of this computation may not necessarily be monotone; we
address this by converting this poly-time estimator of L∗

c to one that is “almost”
monotone.

4.2 Polynomial-Time, Almost-Monotone Approximation

The log det objective function of (Pc) is strictly concave and self-concordant [7].
The maximization of a concave, self-concordant function subject to a set of linear
constraints can be performed through the barrier method (see, e.g., [7] Section 11.5.5
for general self-concordant optimization as well as [33] for a detailed treatment of
the log det objective). The performance of the barrier method is summarized in our
case by the following lemma:

Lemma 3 (Boyd and Vandenberghe [7]). For any ε > 0, the barrier method com-
putes an approximation L̂∗

c that is ε-accurate, i.e., it satisfies |L̂∗
c −L∗

c | ≤ ε, in time
O
(

poly(n, d, log log ε−1)
)

. The same guarantees apply when maximizing L subject
to an arbitrary set of O(n) linear constraints.

Clearly, the optimal value L∗
c of (Pc) is monotone in c: formally, for any two

c, c′ ∈ R
n
+ s.t. c ≤ c′ coordinate-wise, Dc′ ⊆ Dc and thus L∗

c ≥ L∗
c′ . Hence, the map

c 7→ L∗
c is non-increasing. Unfortunately, the same is not true for the output L̂∗

c

of the barrier method: there is no guarantee that the ε-accurate approximation L̂∗
c

exhibits any kind of monotonicity.
Nevertheless, we prove that it is possible to use the barrier method to construct

an approximation of L∗
c that is “almost” monotone. More specifically, given δ > 0,

we say that f : Rn → R is δ-decreasing if f(x) ≥ f(x + µei), for all i ∈ N , x ∈
R
n, µ ≥ δ, where ei is the i-th canonical basis vector of Rn. In other words, f is

δ-decreasing if increasing any coordinate by δ or more at input x ensures that the
output will be at most f(x).

Our next technical result establishes that, using the barrier method, it is possible
to construct an algorithm that computes L∗

c at arbitrary accuracy in polynomial time
and is δ-decreasing. We achieve this by restricting the optimization over a subset of
Dc at which the concave relaxation L is “sufficiently” concave. Formally, for α ≥ 0
let

Dc,α ≡ {λ ∈ [α, 1]n :
∑

i∈N ciλi ≤ B} ⊆ Dc.

Note that Dc = Dc,0. Consider the following perturbation of the concave relaxation
(Pc):

Maximize: L(λ)

subject to: λ ∈ Dc,α
(Pc,α)

11



Algorithm 1

Input: B ∈ R+, c ∈ [0, B]n, δ ∈ (0, 1], ε ∈ (0, 1]
1: α← ε(δ/B + n2)−1

2: Use the barrier method to solve (Pc,α) with accuracy ε′ = 1
2n+1Bαδb; denote the

output by L̂∗
c,α

3: return L̂∗
c,α

Our construction of a δ-decreasing, ε-accurate approximator of L∗
c proceeds as

follows: first, it computes an appropriately selected lower bound α; using this
bound, it solves the perturbed problem (Pc,α) using the barrier method, also at
an appropriately selected accuracy ε′, obtaining thus a ε′-accurate approximation of
L∗
c,α ≡ maxλ∈Dc,α

L(λ) . The corresponding output is returned as an approximation
of L∗

c . A summary of the algorithm and the specific choices of α and ε′ are given in
Algorithm 1. The following proposition, which is proved in Appendix C, establishes
that this algorithm has both properties we desire:

Proposition 2. For any δ ∈ (0, 1] and any ε ∈ (0, 1], Algorithm 1 computes a
δ-decreasing, ε-accurate approximation of L∗

c . The running time of the algorithm is
O
(

poly(n, d, log log B
bεδ )
)

.

We note that the execution of the barrier method on the restricted set Dc,α is
necessary. The algorithm’s output when executed over the entire domain may not
necessarily be δ-decreasing, even when the approximation accuracy is small. This
is because costs become saturated when the optimal λ ∈ Dc lies at the bound-
ary: increasing them has no effect on the objective. Forcing the optimization to
happen “off” the boundary ensures that this does not occur, while taking α to be
small ensures that this perturbation does not cost much in terms of approximation
accuracy.

5 Mechanism for EDP

In this section we use the δ-decreasing, ε-accurate algorithm solving the convex op-
timization problem (Pc) to design a mechanism for EDP. The construction follows
a methodology proposed in [29] and employed by Chen et al. [11] and Singer [30]
to construct deterministic, truthful mechanisms for Knapsack and Coverage re-
spectively. We briefly outline this below (see also Algorithm 2 in Appendix F for a
detailed description).

Recall from Section 3.2 that i∗ ≡ argmaxi∈N V ({i}) is the element of maxi-
mum value, and SG is a set constructed greedily, by selecting elements of maximum
marginal value per cost. The general framework used by Chen et al. [11] and by
Singer [30] for the Knapsack and Coverage value functions contructs an allo-
cation as follows. First, a polynomial-time, monotone approximation of OPT is

12



computed over all elements excluding i∗. The outcome of this approximation is
compared to V ({i∗}): if it exceeds V ({i∗}), then the mechanism constructs an allo-
cation SG greedily; otherwise, the only item allocated is the singleton {i∗}. Provided
that the approximation used is within a constant from OPT , the above allocation
can be shown to also yield a constant approximation to OPT . Furthermore, us-
ing Myerson’s Theorem [23], it can be shown that this allocation combined with
threshold payments (see Lemma 4 below) constitute a truthful mechanism.

The approximation algorithms used in [11, 30] are LP relaxations, and thus
their outputs are monotone and can be computed exactly in polynomial time. We
show that the convex relaxation (Pc), which can be solved by an ε-accurate, δ-
decreasing algorithm, can be used to construct a δ-truthful, constant approximation
mechanism, by being incorporated in the same framework.

To obtain this result, we use the following modified version of Myerson’s theorem
[23], whose proof we provide in Appendix E.

Lemma 4. A normalized mechanism M = (S, p) for a single parameter auction is
δ-truthful if: (a) S is δ-monotone, i.e., for any agent i and c′i ≤ ci− δ, for any fixed
costs c−i of agents in N \ {i}, i ∈ S(ci, c−i) implies i ∈ S(c′i, c−i), and (b) agents
are paid threshold payments, i.e., for all i ∈ S(c), pi(c) = inf{c′i : i ∈ S(c′i, c−i)}.

Lemma 4 allows us to incorporate our relaxation in the above framework, yielding
the following theorem:

Theorem 1. For any δ ∈ (0, 1], and any ε ∈ (0, 1], there exists a δ-
truthful, individually rational and budget feasible mechanim for EDP that runs
in time O

(

poly(n, d, log log B
bεδ )
)

and allocates a set S∗ such that OPT ≤
10e−3+

√
64e2−24e+9

2(e−1) V (S∗) + ε ≃ 12.98V (S∗) + ε.

The proof of the theorem, as well as our proposed mechanism, can be found
in Appendix F. In addition, we prove the following simple lower bound, proved in
Appendix G.

Theorem 2. There is no 2-approximate, truthful, budget feasible, individually ra-
tional mechanism for EDP.

6 Conclusions

We have proposed a convex relaxation for EDP, and showed that it can be used
to design a δ-truthful, constant approximation mechanism that runs in polynomial
time. Our objective function, commonly known as the Bayes D-optimality criterion,
is motivated by linear regression, and in particular captures the information gain
when experiments are used to learn a linear model.

A natural question to ask is to what extent the results we present here generalize
to other machine learning tasks beyond linear regression. We outline a path in pur-
suing such generalizations in Appendix H. In particular, although the information
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gain is not generally a submodular function, we show that for a wide class of models,
in which experiments outcomes are perturbed by independent noise, the information
gain indeed exhibits submodularity. Several important learning tasks fall under this
category, including generalized linear regression, logistic regression, etc. In light of
this, it would be interesting to investigate whether our convex relaxation approach
generalizes to other learning tasks in this broader class.

The literature on experimental design includes several other optimality crite-
ria [26, 4]. Our convex relaxation (10) involved swapping the log det scalarization
with the expectation appearing in the multi-linear extension (9). The same swap is
known to yield concave objectives for several other optimality criteria, even when
the latter are not submodular (see, e.g., Boyd and Vandenberghe [7]). Exploiting the
convexity of such relaxations to design budget feasible mechanisms is an additional
open problem of interest.
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A Properties of the Value Function V

For the sake of concreteness, we prove below the positivity, monotonicity, and sub-
modularity of V (S) = log det(Id +XT

S XS) from basic principles. We note however
that these properties hold more generally for the information gain under a wider
class of models than the linear model with Gaussian noise and prior that we study
here: we discuss this in more detail in Appendix H.

For two symmetric matrices A and B, we write A ≻ B (A � B) if A − B is
positive definite (positive semi-definite). This order allows us to define the notion of
a decreasing as well as convex matrix function, similarly to their real counterparts.
With this definition, matrix inversion is decreasing and convex over symmetric pos-
itive definite matrices (see Example 3.48 p. 110 in [7]).

Recall that the determinant of a matrix equals the product of its eigenvalues.
The positivity of V (S) follows from the fact that XT

S XS is positive semi-definite
and, as such Id +XT

SXS � Id, so all its eigenvalues are larger than or equal to one,
and they are all one if S = ∅. The marginal contribution of item i ∈ N to set S ⊆ N
can be written as

V (S ∪ {i})− V (S) =
1

2
log det(Id +XT

SXS + xix
T
i )−

1

2
log det(Id +XT

S XS)

=
1

2
log det(Id + xix

T
i (Id +XT

SXS)
−1) =

1

2
log(1 + xTi A(S)

−1xi)

(12)

where A(S) ≡ Id + XT
SXS , and the last equality follows from the Sylvester’s de-

terminant identity [2]. Monotonicity therefore follows from the fact that A(S)−1 is
positive semidefinite. Finally, since the inverse is decreasing over positive definite
matrices, we have

∀S ⊆ N , A(S)−1 � A(S ∪ {i})−1. (13)

and submodularity also follows, as a function is submodular if and only if the
marginal contributions are non-increasing in S.

B Proofs of Statements in Section 4.1

B.1 Proof of Lemma 1

The bound F (λ) ≤ L(λ) follows by the concavity of the log det function and Jensen’s
inequality. To show the lower bound, we first prove that 1

2 is a lower bound of the

ratio ∂iF (λ)/∂iL(λ), where we use ∂i · as a shorthand for ∂
∂λi

, the partial derivative
with respect to the i-th variable.
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Let us start by computing the partial derivatives of F and L with respect to the
i-th component. Observe that

∂iP
λ
N (S) =

{

P λ
N\{i}(S \ {i}) if i ∈ S,

− P λ
N\{i}(S) if i ∈ N \ S.

Hence,

∂iF (λ) =
∑

S⊆N
i∈S

P λ
N\{i}(S \ {i})V (S)−

∑

S⊆N
i∈N\S

P λ
N\{i}(S)V (S).

Now, using that every S such that i ∈ S can be uniquely written as S′ ∪{i}, we can
write:

∂iF (λ) =
∑

S⊆N
i∈N\S

P λ
N\{i}(S)

(

V (S ∪ {i}) − V (S)
)

.

Recall from (12) that the marginal contribution of i to S is given by

V (S ∪ {i}) − V (S) =
1

2
log(1 + xTi A(S)

−1xi),

where A(S) = Id +XT
S XS . Using this,

∂iF (λ) =
1

2

∑

S⊆N
i∈N\S

P λ
N\{i}(S) log

(

1 + xTi A(S)
−1xi

)

The computation of the derivative of L uses standard matrix calculus: writing
Ã(λ) ≡ Id +

∑

i∈N λixix
T
i ,

det Ã(λ+ h · ei) = det
(

Ã(λ) + hxix
T
i

)

= det Ã(λ)
(

1 + hxTi Ã(λ)
−1xi

)

.

Hence,
log det Ã(λ+ h · ei) = log det Ã(λ) + hxTi Ã(λ)

−1xi + o(h),

which implies

∂iL(λ) =
1

2
xTi Ã(λ)

−1xi.

Recall from (13) that the monotonicity of the matrix inverse over positive definite
matrices implies

∀S ⊆ N , A(S)−1 � A(S ∪ {i})−1
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as A(S) � A(S ∪ {i}). Observe that since 1 ≤ λi ≤ 1, P λ
N\{i}(S) ≥ P λ

N (S) and

P λ
N\{i}(S) ≥ P λ

N (S ∪ {i}) for all S ⊆ N \ {i}. Hence,

∂iF (λ) ≥1

4

∑

S⊆N
i∈N\S

P λ
N (S) log

(

1 + xTi A(S)
−1xi

)

+
1

4

∑

S⊆N
i∈N\S

P λ
N (S ∪ {i}) log

(

1 + xTi A(S ∪ {i})−1xi

)

≥1

4

∑

S⊆N
P λ
N (S) log

(

1 + xTi A(S)
−1xi

)

.

Using that A(S) � Id we get that x
T
i A(S)

−1xi ≤ ‖xi‖22 ≤ 1. Moreover, log(1+x) ≥ x
for all x ≤ 1. Hence,

∂iF (λ) ≥ 1

4
xTi

(

∑

S⊆N
P λ
N (S)A(S)−1

)

xi.

Finally, using that the inverse is a matrix convex function over symmetric positive
definite matrices (see Appendix A):

∂iF (λ) ≥ 1

4
xTi

(

∑

S⊆N
P λ
N (S)A(S)

)−1

xi =
1

4
xTi Ã(λ)

−1xi =
1

2
∂iL(λ).

Having bound the ratio between the partial derivatives, we now bound the ratio
F (λ)/L(λ) from below. Consider the following three cases.

First, if the minimum is attained as λ converges to zero in, e.g., the l2 norm, by
the Taylor approximation, one can write:

F (λ)

L(λ)
∼λ→0

∑

i∈N λi∂iF (0)
∑

i∈N λi∂iL(0)
≥ 1

2
,

i.e., the ratio F (λ)
L(λ) is necessarily bounded from below by 1/2 for small enough λ.

Second, if the minimum of the ratio F (λ)/L(λ) is attained at a vertex of the
hypercube [0, 1]n different from 0. F and L being relaxations of the value function
V , they are equal to V on the vertices which are exactly the binary points. Hence,
the minimum is equal to 1 in this case; in particular, it is greater than 1/2.

Finally, if the minimum is attained at a point λ∗ with at least one coordinate
belonging to (0, 1), let i be one such coordinate and consider the function Gi:

Gi : x 7→
F

L
(λ∗

1, . . . , λ
∗
i−1, x, λ

∗
i+1, . . . , λ

∗
n).
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Then this function attains a minimum at λ∗
i ∈ (0, 1) and its derivative is zero at

this point. Hence:

0 = G′
i(λ

∗
i ) = ∂i

(

F

L

)

(λ∗).

But ∂i(F/L)(λ
∗) = 0 implies that

F (λ∗)
L(λ∗)

=
∂iF (λ∗)
∂iL(λ∗)

≥ 1

2

using the lower bound on the ratio of the partial derivatives. This concludes the
proof of the lemma.

B.2 Proof of Lemma 2

We give a rounding procedure which, given a feasible λ with at least two fractional
components, returns some feasible λ′ with one fewer fractional component such that
F (λ) ≤ F (λ′).

Applying this procedure recursively yields the lemma’s result. Let us consider
such a feasible λ. Let i and j be two fractional components of λ and let us define
the following function:

Fλ(ε) = F (λε) where λε = λ+ ε

(

ei −
ci
cj
ej

)

It is easy to see that if λ is feasible, then:

∀ε ∈
[

max
(

− λi, (λj − 1)
cj
ci

)

,min
(

1− λi, λj
cj
ci

)]

, λε is feasible (14)

Furthermore, the function Fλ is convex; indeed:

Fλ(ε) = ES′∼Pλ
N\{i,j}

(S′)

[

(λi + ε)
(

λj − ε
ci
cj

)

V (S′ ∪ {i, j})

+ (λi + ε)
(

1− λj + ε
ci
cj

)

V (S′ ∪ {i}) + (1− λi − ε)
(

λj − ε
ci
cj

)

V (S′ ∪ {j})

+ (1− λi − ε)
(

1− λj + ε
ci
cj

)

V (S′)
]

Thus, Fλ is a degree 2 polynomial whose dominant coefficient is:

ci
cj
ES′∼Pλ

N\{i,j}
(S′)

[

V (S′ ∪ {i}) + V (S′ ∪ {i}) − V (S′ ∪ {i, j}) − V (S′)
]

which is positive by submodularity of V . Hence, the maximum of Fλ over the
interval given in (14) is attained at one of its limits, at which either the i-th or j-th
component of λε becomes integral.
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B.3 Proof of Proposition 1

The lower bound on L∗
c follows immediately from the fact that L extends V to [0, 1]n.

For the upper bound, let us consider a feasible point λ∗ ∈ Dc such that L(λ∗) = L∗
c .

By applying Lemma 1 and Lemma 2 we get a feasible point λ̄ with at most one
fractional component such that

L(λ∗) ≤ 2F (λ̄). (15)

Let λi denote the fractional component of λ̄ and S denote the set whose indicator
vector is λ̄− λiei. By definition of the multi-linear extension F :

F (λ̄) = (1− λi)V (S) + λiV (S ∪ {i}).

By submodularity of V , V (S ∪ {i}) ≤ V (S) + V ({i}). Hence,

F (λ̄) ≤ V (S) + V (i).

Note that since λ̄ is feasible, S is also feasible and V (S) ≤ OPT . Hence,

F (λ̄) ≤ OPT +max
i∈N

V (i). (16)

Together, (15) and (16) imply the proposition.

C Proof of Proposition 2

We proceed by showing that the optimal value of (Pc,α) is close to the optimal value
of (Pc) (Lemma 6) while being well-behaved with respect to changes of the cost
(Lemma 7). These lemmas together imply Proposition 2.

Note that the choice of α given in Algorithm 1 implies that α < 1
n . This in

turn implies that the feasible set Dc,α of (Pc,α) is non-empty: it contains the strictly
feasible point λ = ( 1n , . . . ,

1
n).

Lemma 5. Let ∂iL(λ) denote the i-th derivative of L, for i ∈ {1, . . . , n}, then:

∀λ ∈ [0, 1]n,
b

2n
≤ ∂iL(λ) ≤ 1

Proof. Recall that we had defined:

Ã(λ) ≡ Id +

n
∑

i=1

λixix
T
i and A(S) ≡ Id +

∑

i∈S
xix

T
i

Let us also define Ak ≡ A({x1, . . . , xk}). We have ∂iL(λ) = xTi Ã(λ)−1xi. Since
Ã(λ) � Id, ∂iL(λ) ≤ xTi xi ≤ 1, which is the right-hand side of the lemma. For
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the left-hand side, note that Ã(λ) � An. Hence ∂iL(λ) ≥ xTi A
−1
n xi. Using the

Sherman-Morrison formula [28], for all k ≥ 1:

xTi A
−1
k xi = xTi A

−1
k−1xi −

(xTi A
−1
k−1xk)

2

1 + xTkA
−1
k−1xk

By the Cauchy-Schwarz inequality:

(xTi A
−1
k−1xk)

2 ≤ xTi A
−1
k−1xi x

T
kA

−1
k−1xk

Hence:

xTi A
−1
k xi ≥ xTi A

−1
k−1xi − xTi A

−1
k−1xi

xTkA
−1
k−1xk

1 + xTkA
−1
k−1xk

But xTkA
−1
k−1xk ≤ 1 and a

1+a ≤ 1
2 if 0 ≤ a ≤ 1, so:

xTi A
−1
k xi ≥ xTi A

−1
k−1xi −

1

2
xTi A

−1
k−1xi ≥

xTi A
−1
k−1xi

2

By induction:

xTi A
−1
n xi ≥

xTi xi
2n

Using that xTi xi ≥ b concludes the proof of the left-hand side of the lemma’s in-
equality.

Let us introduce the Lagrangian of problem (Pc,α):

Lc,α(λ, µ, ν, ξ) ≡ L(λ) + µT (λ− α1) + νT (1− λ) + ξ(B − cTλ)

so that:
L∗
c,α = min

µ,ν,ξ≥0
max
λ
Lc,α(λ, µ, ν, ξ)

Similarly, we define Lc ≡ Lc,0 the lagrangian of (Pc).
Let λ∗ be primal optimal for (Pc,α), and (µ∗, ν∗, ξ∗) be dual optimal for the

same problem. In addition to primal and dual feasibility, the Karush-Kuhn-Tucker
(KKT) conditions [7] give ∀i ∈ {1, . . . , n}:

∂iL(λ
∗) + µ∗

i − ν∗i − ξ∗ci = 0

µ∗
i (λ

∗
i − α) = 0

ν∗i (1− λ∗
i ) = 0

Lemma 6. We have:
L∗
c − αn2 ≤ L∗

c,α ≤ L∗
c

In particular, |L∗
c − L∗

c,α| ≤ αn2.
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Proof. α 7→ L∗
c,α is a decreasing function as it is the maximum value of the L function

over a set-decreasing domain, which gives the rightmost inequality.
Let µ∗, ν∗, ξ∗ be dual optimal for (Pc,α), that is:

L∗
c,α = max

λ
Lc,α(λ, µ∗, ν∗, ξ∗)

Note that Lc,α(λ, µ∗, ν∗, ξ∗) = Lc(λ, µ∗, ν∗, ξ∗) − α1Tµ∗, and that for any λ
feasible for problem (Pc), Lc(λ, µ∗, ν∗, ξ∗) ≥ L(λ). Hence,

L∗
c,α ≥ L(λ)− α1Tµ∗

for any λ feasible for (Pc). In particular, for λ primal optimal for (Pc):

L∗
c,α ≥ L∗

c − α1Tµ∗ (17)

Let us denote by the M the support of µ∗, that is M ≡ {i|µ∗
i > 0}, and by λ∗ a

primal optimal point for (Pc,α). From the KKT conditions we see that:

M ⊆ {i|λ∗
i = α}

Let us first assume that |M | = 0, then 1Tµ∗ = 0 and the lemma follows.
We will now assume that |M | ≥ 1. In this case cTλ∗ = B, otherwise we could

increase the coordinates of λ∗ in M , which would increase the value of the objective
function and contradict the optimality of λ∗. Note also, that |M | ≤ n−1, otherwise,
since α < 1

n , we would have cTλ∗ < B, which again contradicts the optimality of
λ∗. Let us write:

B = cTλ∗ = α
∑

i∈M
ci +

∑

i∈M̄
λ∗
i ci ≤ α|M |B + (n− |M |)max

i∈M̄
ci

That is:

max
i∈M̄

ci ≥
B −B|M |α
n− |M | >

B

n
(18)

where the last inequality uses again that α < 1
n . From the KKT conditions, we see

that for i ∈M , ν∗i = 0 and:

µ∗
i = ξ∗ci − ∂iL(λ

∗) ≤ ξ∗ci ≤ ξ∗B (19)

since ∂iL(λ
∗) ≥ 0 and ci ≤ 1.

Furthermore, using the KKT conditions again, we have that:

ξ∗ ≤ inf
i∈M̄

∂iL(λ
∗)

ci
≤ inf

i∈M̄

1

ci
=

1

maxi∈M̄ ci
(20)

where the last inequality uses Lemma 5. Combining (18), (19) and (20), we get
that:

∑

i∈M
µ∗
i ≤ |M |ξ∗B ≤ nξ∗B ≤ nB

maxi∈M̄ ci
≤ n2
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This implies that:

1Tµ∗ =
n
∑

i=1

µ∗
i =

∑

i∈M
µ∗
i ≤ n2

which along with (17) proves the lemma.

Lemma 7. If c′ = (c′i, c−i), with c′i ≤ ci − δ, we have:

L∗
c′,α ≥ L∗

c,α +
αδb

2nB

Proof. Let µ∗, ν∗, ξ∗ be dual optimal for (Pc′,α). Noting that:

Lc′,α(λ, µ∗, ν∗, ξ∗) ≥ Lc,α(λ, µ∗, ν∗, ξ∗) + λiξ
∗δ,

we get similarly to Lemma 6:

L∗
c′,α ≥ L(λ) + λiξ

∗δ

for any λ feasible for (Pc,α). In particular, for λ∗ primal optimal for (Pc,α):

L∗
c′,α ≥ L∗

c,α + αξ∗δ

since λ∗
i ≥ α.

Using the KKT conditions for (Pc′,α), we can write:

ξ∗ = inf
i:λ

′∗
i >α

xTi S(λ
′∗)−1xi
c′i

with λ
′∗ optimal for (Pc′,α). Since c′i ≤ B, using Lemma 5, we get that ξ∗ ≥ b

2nB ,
which concludes the proof.

We are now ready to conclude the proof of Proposition 2. Let L̂∗
c,α be the

approximation computed by Algorithm 1.

1. using Lemma 6:

|L̂∗
c,α − L∗

c | ≤ |L̂∗
c,α − L∗

c,α|+ |L∗
c,α − L∗

c | ≤
αδ

B
+ αn2 = ε

which proves the ε-accuracy.

2. for the δ-decreasingness, let c′ = (c′i, c−i) with c′i ≤ ci − δ, then:

L̂∗
c′,α ≥ L∗

c′,α −
αδb

2n+1B
≥ L∗

c,α +
αδb

2n+1B
≥ L̂∗

c,α

where the first and last inequalities follow from the accuracy of the approxi-
mation, and the inner inequality follows from Lemma 7.
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3. the accuracy of the approximation L̂∗
c,α is:

ε′ =
εδb

2n+1(δ + n2B)

Note that:

log log(ε′)−1 = O

(

log log
B

εδb
+ log n

)

Using Lemma 3 concludes the proof of the running time.

D Budget Feasible Reverse Auction Mechanisms

We review in this appendix the formal definition of a budget feasible reverse auction
mechanisms, as introduced by Singer [29]. We depart from the definitions in [29]
only in considering δ-truthful, rather than truthful, mechanisms.

Given a budget B and a value function V : 2N → R+, a mechanism M = (S, p)
comprises (a) an allocation function S : R

n
+ → 2N and (b) a payment function

p : Rn
+ → R

n
+. Let si(c) = 1i∈S(c) be the binary indicator of i ∈ S(c). We seek

mechanisms that have the following properties [29]:

• Normalization. Unallocated experiments receive zero payments: si(c) =
0 implies pi(c) = 0.

• Individual Rationality. Payments for allocated experiments exceed costs:
pi(c) ≥ ci · si(c).

• No Positive Transfers. Payments are non-negative: pi(c) ≥ 0.

• δ-Truthfulness. Reporting one’s true cost is an almost-dominant [27] strategy.
Formally, let c−i be a vector of costs of all agents except i. Then, pi(ci, c−i)−
si(ci, c−i) · ci ≥ pi(c

′
i, c−i)− si(c

′
i, c−i) · ci, for every i ∈ N and every two cost

vectors (ci, c−i) and (c′i, c−i) such that |ci− c′i| > δ. The mechanism is truthful
if δ = 0.

• Budget Feasibility. The sum of the payments should not exceed the budget
constraint, i.e.

∑

i∈N pi(c) ≤ B.

• (α, β)-approximation. The value of the allocated set should not be too far from
the optimum value of the full information case, as given by (7). Formally, there
must exist some α ≥ 1 and β > 0 such that OPT ≤ αV (S(p)) + β, where
OPT = maxS⊆N

{

V (S) | ∑i∈S ci ≤ B
}

.

• Computational Efficiency. The allocation and payment function should be
computable in time polynomial in various parameters.
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E Proof of Lemma 4

Using the notations of Lemma 4, we want to prove that if ci and c′i are two different
costs reported by user i with |ci − c′i| ≥ δ, and if c−i is any vector of costs reported
by the other users:

pi(ci, c−i)− si(ci, c−i) · ci ≥ pi(c
′
i, c−i)− si(c

′
i, c−i) · ci (21)

We distinguish four cases depending on the value of si(ci, c−i) and s′i(c
′
i, c−i).

1. si(ci, c−i) = si(c
′
i, c−i) = 0. Since the mechanism is normalized we have

pi(ci, c−i) = pi(c
′
i, c−i) = 0 and (21) is true.

2. si(c
′
i, c−i) = si(ci, c−i) = 1. Note that i is paid her threshold payment when

allocated, and since this payment does not depend on i’s reported cost, (21)
is true (and is in fact an equality).

3. si(c
′
i, c−i) = 0 and si(ci, c−i) = 1. We then have pi(c

′
i, c−i) = 0 by normaliza-

tion and (21) follows from individual rationality.

4. si(c
′
i, c−i) = 1 and si(ci, c−i) = 0. By δ-decreasingness of si, ci ≥ c′i + δ,

and si(ci, c−i) = 0 implies that i’s threshold payment is less than ci, i.e.
pi(c

′
i, c−i) ≤ ci. This last inequality is equivalent to (21) in this final case.

F Proof of Theorem 1

We now present the proof of Theorem 1. Our mechanism for EDP is composed of
(a) the allocation function presented in Algorithm 2, and (b) the payment function
which pays each allocated agent i her threshold payment as described in Myerson’s
Theorem. In the case where {i∗} is the allocated set, her threshold payment is B.
A closed-form formula for threshold payments when SG is the allocated set can be
found in [29].

We use the notation OPT−i∗ to denote the optimal value of EDP when the
maximum value element i∗ is excluded. We also use OPT ′

−i∗ to denote the approxi-
mation computed by the δ-decreasing, ε-accurate approximation of L∗

c−i∗
, as defined

in Algorithm 2.
The properties of δ-truthfulness and individual rationality follow from δ-

monotonicity and threshold payments. δ-monotonicity and budget feasibility fol-
low similar steps as the analysis of Chen et al. [11], adapted to account for δ-
monotonicity:

Lemma 8. Our mechanism for EDP is δ-monotone and budget feasible.
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Algorithm 2 Mechanism for EDP

Input: B ∈ R+,c ∈ [0, B]n, δ ∈ (0, 1], ε ∈ (0, 1]
1: i∗ ← argmaxj∈N V (j)
2: OPT ′

−i∗ ← using Proposition 2, compute a ε-accurate, δ-decreasing approxima-
tion of

L∗
c−i∗
≡ maxλ∈[0,1]n{L(λ) | λi∗ = 0,

∑

i∈N\{i∗} ciλi ≤ B}

3: C ← 8e−1+
√
64e2−24e+9

2(e−1)

4: if OPT ′
−i∗ < C · V (i∗) then

5: return {i∗}
6: else

7: i← argmax1≤j≤n
V (j)
cj

8: SG ← ∅
9: while ci ≤ B

2
V (SG∪{i})−V (SG)

V (SG∪{i}) do

10: SG ← SG ∪ {i}
11: i← argmaxj∈N\SG

V (SG∪{j})−V (SG)
cj

12: end while

13: return SG

14: end if

Proof. Consider an agent i with cost ci that is selected by the mechanism, and
suppose that she reports a cost c′i ≤ ci − δ while all other costs stay the same.
Suppose that when i reports ci, OPT ′

−i∗ ≥ CV (i∗); then, as si(ci, c−i) = 1, i ∈ SG.
By reporting cost c′i, i may be selected at an earlier iteration of the greedy algorithm.
Denote by Si (resp. S′

i) the set to which i is added when reporting cost ci (resp.
c′i). We have S′

i ⊆ Si; in addition, S′
i ⊆ S′

G, the set selected by the greedy algorithm
under (c′i, c−i); if not, then greedy selection would terminate prior to selecting i also
when she reports ci, a contradiction. Moreover, we have

c′i ≤ ci ≤
B

2

V (Si ∪ {i}) − V (Si)

V (Si ∪ {i})
≤ B

2

V (S′
i ∪ {i}) − V (S′

i)

V (S′
i ∪ {i})

by the monotonicity and submodularity of V . Hence i ∈ S′
G. By δ-decreasingness

of OPT ′
−i∗ , under c′i ≤ ci − δ the greedy set is still allocated and si(c

′
i, c−i) = 1.

Suppose now that when i reports ci, OPT ′
−i∗ < CV (i∗). Then si(ci, c−i) = 1 iff

i = i∗. Reporting c′i∗ ≤ ci∗ does not change V (i∗) nor OPT ′
−i∗ ≤ CV (i∗); thus

si∗(c
′
i∗ , c−i∗) = 1, so the mechanism is monotone.
To show budget feasibility, suppose that OPT ′

−i∗ < CV (i∗). Then the mech-
anism selects i∗. Since the bid of i∗ does not affect the above condition, the
threshold payment of i∗ is B and the mechanism is budget feasible. Suppose that
OPT ′

−i∗ ≥ CV (i∗). Denote by SG the set selected by the greedy algorithm, and for
i ∈ SG, denote by Si the subset of the solution set that was selected by the greedy
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algorithm just prior to the addition of i—both sets determined for the present cost
vector c. Then for any submodular function V , and for all i ∈ SG:

if c′i ≥
V (Si ∪ {i}) − V (S)

V (SG)
B then si(c

′
i, c−i) = 0 (22)

In other words, if i increases her cost to a value higher than V (Si∪{i})−V (S)
V (SG) , she

will cease to be in the selected set SG. As a result, (22) implies that the threshold
payment of user i is bounded by the above quantity. Hence, the total payment is
bounded by the telescopic sum:

∑

i∈SG

V (Si ∪ {i}) − V (Si)

V (SG)
B =

V (SG)− V (∅)
V (SG)

B = B

The complexity of the mechanism is given by the following lemma.

Lemma 9 (Complexity). For any ε > 0 and any δ > 0, the complexity of the
mechanism is O

(

poly(n, d, log log B
bεδ )
)

Proof. The value function V in (6a) can be computed in time O(poly(n, d)) and the
mechanism only involves a linear number of queries to the function V . By Propo-
sition 2, line 2 of Algorithm 2 can be computed in time O(poly(n, d, log log B

bεδ )).
Hence the allocation function’s complexity is as stated.

Finally, we prove the approximation ratio of the mechanism. We use the follow-
ing lemma from [11] which bounds OPT in terms of the value of SG, as computed
in Algorithm 2, and i∗, the element of maximum value.

Lemma 10 ([11]). Let SG be the set computed in Algorithm 2 and let i∗ =
argmaxi∈N V ({i}). We have:

OPT ≤ e

e− 1

(

3V (SG) + 2V (i∗)
)

.

Using Proposition 1 and Lemma 10 we can complete the proof of Theorem 1 by
showing that, for any ε > 0, if OPT ′

−i, the optimal value of L when i∗ is excluded
from N , has been computed to a precision ε, then the set S∗ allocated by the
mechanism is such that:

OPT ≤ 10e−3 +
√
64e2−24e+9

2(e−1) V (S∗)+ε. (23)

To see this, let L∗
c−i∗

be the maximum value of L subject to λi∗ = 0,
∑

i∈N\i∗ ci ≤ B.

From line 2 of Algorithm 2, we have L∗
c−i∗
− ε ≤ OPT ′

−i∗ ≤ L∗
c−i∗

+ ε.
If the condition on line 4 of the algorithm holds then, from the lower bound in

Proposition 1,

V (i∗) ≥ 1

C
L∗
c−i∗
− ε

C
≥ 1

C
OPT−i∗ −

ε

C
.
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Also, OPT ≤ OPT−i∗ + V (i∗), hence,

OPT ≤ (1 + C)V (i∗) + ε. (24)

If the condition on line 4 does not hold, by observing that L∗
c−i∗
≤ L∗

c and the upper
bound of Proposition 1, we get

V (i∗) ≤ 1

C
L∗
c−i∗

+
ε

C
≤ 1

C

(

2OPT + 2V (i∗)
)

+
ε

C
.

Applying Lemma 10,

V (i∗) ≤ 1

C

(

2e

e− 1

(

3V (SG) + 2V (i∗)
)

+ 2V (i∗)
)

+
ε

C
.

Note that C satifies C(e− 1)− 6e+ 2 > 0, hence

V (i∗) ≤ 6e

C(e− 1)− 6e+ 2
V (SG) +

(e− 1)ε

C(e− 1)− 6e+ 2
.

Finally, using Lemma 10 again, we get

OPT ≤ 3e

e− 1

(

1 +
4e

C(e− 1)− 6e+ 2

)

V (SG) +
2eε

C(e− 1)− 6e+ 2
. (25)

Our choice of C, namely,

C =
8e− 1 +

√
64e2 − 24e + 9

2(e − 1)
, (26)

is precisely to minimize the maximum among the coefficients of Vi∗ and V (SG) in
(24) and (25), respectively. Indeed, consider:

max

(

1 +C,
3e

e− 1

(

1 +
4e

C(e− 1)− 6e+ 2

))

.

This function has two minima, only one of those is such that C(e− 1)− 6e+2 ≥ 0.
This minimum is precisely (26). For this minimum, 2eε

C(e−1)−6e+2 ≤ ε. Placing the

expression of C in (24) and (25) gives the approximation ratio in (23), and concludes
the proof of Theorem 1.

G Proof of Theorem 2

Suppose, for contradiction, that such a mechanism exists. From Myerson’s Theorem
[23], a single parameter auction is truthful if and only if the allocation function is
monotone and agents are paid theshold payments. Consider two experiments with
dimension d = 2, such that x1 = e1 = [1, 0], x2 = e2 = [0, 1] and c1 = c2 = B/2 + ε.
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Then, one of the two experiments, say, x1, must be in the set selected by the
mechanism, otherwise the ratio is unbounded, a contradiction. If x1 lowers its value
to B/2− ε, by monotonicity it remains in the solution; by threshold payment, it is
paid at least B/2 + ε. So x2 is not included in the solution by budget feasibility
and individual rationality: hence, the selected set attains a value log 2, while the
optimal value is 2 log 2.

H Extensions

H.1 Strategic Experimental Design with Non-Homotropic Prior

In the general case where the prior distribution of the experimenter on the model β
in (2) is not homotropic and has a generic covariance matrix R, the value function
takes the general form given by (5).

Let us denote by λ (resp. Λ) the smallest (resp. largest) eigenvalue of R,
applying the mechanism described in Algorithm 2 and adapting the analysis of the
approximation ratio mutatis mutandis, we get the following result which extends
Theorem 1.

Theorem 3. For any δ ∈ (0, 1], and any ε ∈ (0, 1], there exists a δ-truthful, indi-
vidually rational and budget feasible mechanism for the objective function V given
by (5) that runs in time O(poly(n, d, log log BΛ

εδbλ )) and allocates a set S∗ such that:

OPT ≤
(

6e− 2

e− 1

1/λ

log(1 + 1/λ)
+ 4.66

)

V (S∗) + ε.

H.2 Non-Bayesian Setting

In the non-bayesian setting, i.e. when the experimenter has no prior distribution on
the model, the covariance matrix R is the zero matrix. In this case, the ridge regres-
sion estimation procedure (3) reduces to simple least squares (i.e., linear regression),
and the D-optimality criterion reduces to the entropy of β̂, given by:

V (S) = log det(XT
S XS) (27)

A natural question which arises is whether it is possible to design a deterministic
mechanism in this setting. Since (27) may take arbitrarily small negative values, to
define a meaningful approximation one would consider the (equivalent) maximiza-
tion of V (S) = detXT

S XS . However, the following lower bound implies that such an
optimization goal cannot be attained under the constraints of truthfulness, budget
feasibility, and individual rationality.

Lemma 11. For any M > 1, there is no M -approximate, truthful, budget feasi-
ble, individually rational mechanism for a budget feasible reverse auction with value
function V (S) = detXT

S XS.
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Proof. From Myerson’s Theorem [23], a single parameter auction is truthful if and
only if the allocation function is monotone and agents are paid theshold payments.
Given M > 1, consider n = 4 experiments of dimension d = 2. For e1, e2 the
standard basis vectors in R

2, let x1 = e1, x2 = e1, and x3 = δe1, x4 = δe2, where
0 < δ < 1/(M − 1). Moreover, assume that c1 = c2 = 0.5 + ε, while c3 = c4 = ε,
for some small ε > 0. Suppose, for the sake of contradiction, that there exists a
mechanism with approximation ratio M . Then, it must include in the solution S at
least one of x1 or x2: if not, then V (S) ≤ δ2, while OPT = (1+δ)δ, a contradiction.
Suppose thus that the solution contains x1. By the monotonicity property, if the
cost of experiment x1 reduces to B/2 − 3ε, x1 will still be in the solution. By
threshold payments, experiment x1 receives in this case a payment that is at least
B/2 + ε. By individual rationality and budget feasibility, x2 cannot be included in
the solution, so V (S) is at most (1+ δ)δ. However, the optimal solution includes all
experiments, and yields OPT = (1 + δ)2, a contradiction.

H.3 Beyond Linear Models

Selecting experiments that maximize the information gain in the Bayesian setup
leads to a natural generalization to other learning examples beyond linear regression.
In particular, consider the following variant of the standard PAC learning setup [32]:
assume that the features xi, i ∈ N take values in some generic set Ω, called the query
space. Measurements yi ∈ R are given by

yi = h(xi) + εi (28)

where h ∈ H for some subset H of all possible mappings h : Ω → R, called the
hypothesis space. As before, we assume that the experimenter has a prior distribu-
tion on the hypothesis h ∈ H; we also assume that εi are random variables in R,
not necessarily identically distributed, that are independent conditioned on h. As
before, the features xi are public, and the goal of the experimenter is to (a) retrieve
measurements yi and (b) estimate h as accurately as possible.

This model is quite broad, and captures many classic machine learning tasks;
we give a few concrete examples below:

1. Generalized Linear Regression. In this case, Ω = R
d, H is the set of linear

maps {h(x) = βTx s.t. β ∈ R
d}, and εi are independent zero-mean variables

(not necessarily identically distributed).

2. Learning Binary Functions with Bernoulli Noise. When learning a
binary function under noise, the experimenter wishes to determine a binary
function h by testing its output on differrent inputs; however, the output may
be corrupted with probability p. Formally, Ω = {0, 1}d, H is some subset of
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binary functions h : Ω→ {0, 1}, and

εi =

{

0, w. prob. 1− p

h̄(xi)− h(xi), w. prob. p

3. Logistic Regression. Logistic regression aims to learn a hyperplane sepa-
rating +1–labeled values from −1–labeled values; again, values can be cor-
rupted, and the probability that a label is flipped drops with the distance
from the hyperplane. Formally, Ω = R

d, H is the set of maps {h(x) =
sign(βTx) for some β ∈ R

d}, and εi are independent conditioned on β such
that

εi =







−2 · 1βTx>0, w. prob. 1

1+eβT x

+2 · 1βTx<0, w. prob. eβ
T x

1+eβT x

We can again define the information gain as an objective to maximize:

V (S) = H(h)−H(h | yS), S ⊆ N (29)

This is a monotone set function, and it clearly satisfies V (∅) = 0. In general, the
information gain is not a submodular function. However, when the errors εi are
independent conditioned on h, the following lemma holds:

Lemma 12. The value function given by the information gain (29) is submodular.

Proof. A more general statement for graphical models is shown in [19]; in short,
using the chain rule for the conditional entropy we get:

V (S) = H(yS)−H(yS | h) = H(yS)−
∑

i∈S
H(yi | h) (30)

where the second equality comes from the independence of the yi’s conditioned on h.
Recall that the joint entropy of a set of random variables is a submodular function.
Thus, the value function is written in (30) as the sum of a submodular function and
a modular function.

This lemma implies that learning an arbitrary hypothesis, under an arbitrary
prior when noise is conditionally independent leads to a submodular value function.
Hence, we can apply the previously known results by Singer [29] and Chen et al.
[11] to get the following corollary:

Corollary 1. For Bayesian experimental design with an objective given by the in-
formation gain (29), there exists a randomized, polynomial-time, budget feasible,
individually rational, and universally truthful mechanism with a 7.91 approximation
ratio, in expectation.
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In cases where maximizing (29) can be done in polynomial time in the full-
information setup, there exists a deterministic, polynomial-time, budget feasible,
individually rational, and truthful mechanism for Bayesian experimental design with
an 8.34 approximation ratio.

Note however that, in many scenarios covered by this model (including the last
two examples above), even computing the entropy under a given set might be a hard
task—i.e., the value query model may not apply. Hence, identifying learning tasks
in the above class for which truthful or universally truthful constant approxima-
tion mechanisms exist, or studying these problems in the context of stronger query
models such as the demand model [12, 6] remains an interesting open question.

I Non-Truthfulness of the Maximum Operator

We give a counterxample of the truthfulness of the maximum mechanism whose
allocation rule is defined in (8) when the value function V is as defined in (1).
We denote by (e1, e2, e3) the canonical basis of R3 and define the following feature
vectors: x1 = e1, x2 = 1√

2
cos π

5 e2 + 1√
2
sin π

5 e3, x3 = 1√
2
e2 and x4 = 1

2e3, with

associated costs c1 =
5
2 , c2 = c3 = 1 and c4 =

2
3 . We also assume that the budget of

the auctioneer is B = 5
2 .

Note that V (xi) = log(1 + ‖xi‖2), so x1 is the point of maximum value. Let us
now compute the output of the greedy heuristic. We have:

V (x1)

c1
≃ 0.277,

V (x2)

c2
=

V (x3)

c3
≃ 0.405,

V (x4)

c4
≃ 0.335 (31)

so the greedy heuristic will start by selecting x2 or x3. Without loss of generality,
we can assume that it selected x2. From the Sherman-Morrison formula we get:

V ({xi, xj})− V (xi) = log

(

1 + ‖xj‖2 −
〈xi, xj〉2
1 + ‖xi‖2

)

In particular, when xi and xj are orthogonal V ({xi, xj}) = V (xj). This allows us
to compute:

V ({x2, x3})− V (x2)

c3
= log

(

1 +
1

2
− 1

6
cos2

π

5

)

≃ 0.329

V ({x2, x4})− V (x2)

c4
=

3

2
log

(

1 +
1

4
− 1

12
sin2

π

5

)

≃ 0.299

Note that at this point x1 cannot be selected without exceding the budget. Hence,
the greedy heuristic will add x3 to the greedy solution and returns the set {x2, x3}
with value:

V ({x2, x3}) = V (x2) + V ({x2, x3})− V (x2) ≃ 0.734
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In contrast, V (x1) ≃ 0.693 so the mechanism will allocate to {x2, x3}.
Let us now assume that user 3 reduces her cost. It follows from (31) that the

greedy heuristic will start by adding her to the greedy solution. Furthermore:

V ({x3, x2})− V (x3)

c2
= log

(

1 +
1

2
− 1

6
cos2

π

5

)

≃ 0.329

V ({x3, x4})− V (x3)

c4
=

3

2
log

(

1 +
1

4

)

≃ 0.334

Hence, the greedy solution will be {x3, x4} with value:

V ({x3, x4}) = V (x3) + V ({x3, x4})− V (x3) ≃ 0.628

As a consequence the mechanism will allocate to user 1 in this case. By reducing
her cost, user 3, who was previously allocated, is now rejected by the mechanism.
This contradicts the monotonicity of the allocation rule, hence its truthfulness by
Myerson’s theorem [23], which states that a single parameter auction is truthful
if and only if the allocation function is monotone and agents are paid theshold
payments.
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