Abstract
We present a deterministic, polynomial time, budget feasible mechanism scheme, that is approximately truthful and yields a constant (≈ 12.98) factor approximation for the Experimental Design Problem (EDP). By applying previous work on budget feasible mechanisms with a submodular objective, one could only have derived either an exponential time deterministic mechanism or a randomized polynomial time mechanism. We also establish that no truthful, budget-feasible mechanism is possible within a factor 2 approximation, and show how to generalize our approach to a wide class of learning problems, beyond linear regression.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ageev, A.A., Sviridenko, M.: Pipage rounding: A new method of constructing algorithms with proven performance guarantee. J. Comb. Optim. 8(3), 307–328 (2004)
Archer, A., Papadimitriou, C., Talwar, K., Tardos, E.: An approximate truthful mechanism for combinatorial auctions with single parameter agents. Internet Mathematics 1(2), 129–150 (2004)
Atkinson, A., Donev, A., Tobias, R.: Optimum experimental designs, with SAS. Oxford University Press, Oxford (2007)
Badanidiyuru, A., Kleinberg, R., Singer, Y.: Learning on a budget: posted price mechanisms for online procurement. In: EC (2012)
Bei, X., Chen, N., Gravin, N., Lu, P.: Budget feasible mechanism design: from prior-free to bayesian. In: STOC (2012)
Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press (2004)
Briest, P., Krysta, P., Vöcking, B.: Approximation techniques for utilitarian mechanism design. In: ACM STOC (2005)
Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a submodular set function subject to a matroid constraint (Extended abstract). In: Fischetti, M., Williamson, D.P. (eds.) IPCO 2007. LNCS, vol. 4513, pp. 182–196. Springer, Heidelberg (2007)
Chaloner, K., Verdinelli, I.: Bayesian experimental design: A review. Statistical Science, 273–304 (1995)
Chen, N., Gravin, N., Lu, P.: On the approximability of budget feasible mechanisms. In: SODA (2011)
Dobzinski, S., Papadimitriou, C.H., Singer, Y.: Mechanisms for complement-free procurement. In: ACM EC (2011)
Dughmi, S.: A truthful randomized mechanism for combinatorial public projects via convex optimization. In: EC (2011)
Dughmi, S., Roughgarden, T., Yan, Q.: From convex optimization to randomized mechanisms: toward optimal combinatorial auctions. In: STOC (2011)
Friedman, J., Hastie, T., Tibshirani, R.: The elements of statistical learning. Springer Series in Statistics, vol. 1 (2001)
Ginebra, J.: On the measure of the information in a statistical experiment. Bayesian Analysis 2(1), 167–211 (2007)
Horel, T., Ioannidis, S., Muthukrishnan, S.: Budget feasible mechanisms for experimental design (2013), http://arxiv.org/abs/1302.5724
Kearns, M., Pai, M.M., Roth, A., Ullman, J.: Private equilibrium release, large games, and no-regret learning (2012), http://arxiv.org/abs/1207.4084v1
Krause, A., Guestrin, C.: A note on the budgeted maximization of submodular functions. Tech. Rep. CMU-CALD-05-103, CMU (2005)
Lavi, R., Swamy, C.: Truthful and near-optimal mechanism design via linear programming. Journal of the ACM 58(6), 25 (2011)
Le Cam, L.: Comparison of experiments: a short review. Lecture Notes-Monograph Series, pp. 127–138 (1996)
McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: FOCS (2007)
Myerson, R.: Optimal auction design. Mathematics of Operations Research 6(1), 58–73 (1981)
Nissim, K., Smorodinsky, R., Tennenholtz, M.: Approximately optimal mechanism design via differential privacy. In: ITCS (2012)
Pai, M., Roth, A.: Privacy and mechanism design. SIGecom Exchanges (2013)
Pukelsheim, F.: Optimal design of experiments. Society for Industrial Mathematics, vol. 50 (2006)
Singer, Y.: Budget feasible mechanisms. In: FOCS (2010)
Singer, Y.: How to win friends and influence people, truthfully: influence maximization mechanisms for social networks. In: WSDM (2012)
Sviridenko, M.: A note on maximizing a submodular set function subject to a knapsack constraint. Oper. Res. Lett. 32(1), 41–43 (2004)
Vandenberghe, L., Boyd, S., Wu, S.: Determinant maximization with linear matrix inequality constraints. SIAM Journal on Matrix Analysis and Applications 19(2), 499–533 (1998)
Vondrak, J.: Optimal approximation for the submodular welfare problem in the value oracle model. In: ACM STOC (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Horel, T., Ioannidis, S., Muthukrishnan, S. (2014). Budget Feasible Mechanisms for Experimental Design. In: Pardo, A., Viola, A. (eds) LATIN 2014: Theoretical Informatics. LATIN 2014. Lecture Notes in Computer Science, vol 8392. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54423-1_62
Download citation
DOI: https://doi.org/10.1007/978-3-642-54423-1_62
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-54422-4
Online ISBN: 978-3-642-54423-1
eBook Packages: Computer ScienceComputer Science (R0)