Skip to main content

Biased Predecessor Search

  • Conference paper
LATIN 2014: Theoretical Informatics (LATIN 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8392))

Included in the following conference series:

  • 1217 Accesses

Abstract

We consider the problem of performing predecessor searches in a bounded universe while achieving query times that depend on the distribution of queries. We obtain several data structures with various properties: in particular, we give data structures that achieve expected query times logarithmic in the entropy of the distribution of queries but with space bounded in terms of universe size, as well as data structures that use only linear space but with query times that are higher (but still sublinear) functions of the entropy. For these structures, the distribution is assumed known. We also consider data structures with general weights on universe elements, as well as the case when the distribution is not known in advance.

This research was partially supported by NSERC and MRI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Andersson, A., Thorup, M.: Dynamic ordered sets with exponential search trees. Journal of the ACM 54(3), Article 13 (2007)

    Google Scholar 

  2. Bădoiu, M., Cole, R., Demaine, E.D., Iacono, J.: A unified access bound on comparison-based dynamic dictionaries. Theoretical Computer Science 382(2), 86–96 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Beame, P., Fich, F.E.: Optimal bounds for the predecessor problem and related problems. Journal of Computer and System Sciences 65(1), 38–72 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Belazzougui, D., Kaporis, A.C., Spirakis, P.G.: Random input helps searching predecessors. arXiv:1104.4353 (2011)

    Google Scholar 

  5. Bent, S.W., Sleator, D.D., Tarjan, R.E.: Biased search trees. SIAM Journal on Computing 14(3), 545–568 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bose, P., Howat, J., Morin, P.: A distribution-sensitive dictionary with low space overhead. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 110–118. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Bose, P., Douïeb, K., Dujmović, V., Howat, J., Morin, P.: Fast local searches and updates in bounded universes. In: Proceedings of the 22nd Canadian Conference on Computational Geometry (CCCG 2010), pp. 261–264 (2010)

    Google Scholar 

  8. Brodal, G.S., Makris, C., Sioutas, S., Tsakalidis, A., Tsichlas, K.: Optimal solutions for the temporal precedence problem. Algorithmica 33(4), 494–510 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Johnson, D.B.: A priority queue in which initialization and queue operations take O(log log D) time. Theory of Computing Systems 15(1), 295–309 (1981)

    Article  Google Scholar 

  10. Kaporis, A.C., Makris, C., Sioutas, S., Tsakalidis, A., Tsichlas, K., Zaroliagis, C.: Improved bounds for finger search on a RAM. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 325–336. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Knuth, D.E.: Optimum binary search trees. Acta Informatica 1(1), 14–25 (1971)

    Article  MATH  Google Scholar 

  12. Mehlhorn, K.: Nearly optimal binary search trees. Acta Informatica 5(4), 287–295 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  13. Mehlhorn, K., Näher, S.: Bounded ordered dictionaries in O (log log N) time and O(n) space. Information Processing Letters 35(4), 183–189 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  14. Pătraşcu, M., Thorup, M.: Time-space trade-offs for predecessor search. In: STOC 2006: Proceedings of the 38th Annual ACM Symposium on Theory of Computing, pp. 232–240 (2006)

    Google Scholar 

  15. Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. Journal of the ACM 32(3), 652–686 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  16. van Emde Boas, P.: Preserving order in a forest in less than logarithmic time and linear space. Information Processing Letters 6(3), 80–82 (1977)

    Article  MATH  Google Scholar 

  17. Willard, D.E.: Log-logarithmic worst-case range queries are possible in space θ(N). Information Processing Letters 17(2), 81–84 (1983)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bose, P., Fagerberg, R., Howat, J., Morin, P. (2014). Biased Predecessor Search. In: Pardo, A., Viola, A. (eds) LATIN 2014: Theoretical Informatics. LATIN 2014. Lecture Notes in Computer Science, vol 8392. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54423-1_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54423-1_65

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54422-4

  • Online ISBN: 978-3-642-54423-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics