Abstract
We consider the problem of performing predecessor searches in a bounded universe while achieving query times that depend on the distribution of queries. We obtain several data structures with various properties: in particular, we give data structures that achieve expected query times logarithmic in the entropy of the distribution of queries but with space bounded in terms of universe size, as well as data structures that use only linear space but with query times that are higher (but still sublinear) functions of the entropy. For these structures, the distribution is assumed known. We also consider data structures with general weights on universe elements, as well as the case when the distribution is not known in advance.
This research was partially supported by NSERC and MRI.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Andersson, A., Thorup, M.: Dynamic ordered sets with exponential search trees. Journal of the ACM 54(3), Article 13 (2007)
Bădoiu, M., Cole, R., Demaine, E.D., Iacono, J.: A unified access bound on comparison-based dynamic dictionaries. Theoretical Computer Science 382(2), 86–96 (2007)
Beame, P., Fich, F.E.: Optimal bounds for the predecessor problem and related problems. Journal of Computer and System Sciences 65(1), 38–72 (2002)
Belazzougui, D., Kaporis, A.C., Spirakis, P.G.: Random input helps searching predecessors. arXiv:1104.4353 (2011)
Bent, S.W., Sleator, D.D., Tarjan, R.E.: Biased search trees. SIAM Journal on Computing 14(3), 545–568 (1985)
Bose, P., Howat, J., Morin, P.: A distribution-sensitive dictionary with low space overhead. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 110–118. Springer, Heidelberg (2009)
Bose, P., Douïeb, K., Dujmović, V., Howat, J., Morin, P.: Fast local searches and updates in bounded universes. In: Proceedings of the 22nd Canadian Conference on Computational Geometry (CCCG 2010), pp. 261–264 (2010)
Brodal, G.S., Makris, C., Sioutas, S., Tsakalidis, A., Tsichlas, K.: Optimal solutions for the temporal precedence problem. Algorithmica 33(4), 494–510 (2002)
Johnson, D.B.: A priority queue in which initialization and queue operations take O(log log D) time. Theory of Computing Systems 15(1), 295–309 (1981)
Kaporis, A.C., Makris, C., Sioutas, S., Tsakalidis, A., Tsichlas, K., Zaroliagis, C.: Improved bounds for finger search on a RAM. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 325–336. Springer, Heidelberg (2003)
Knuth, D.E.: Optimum binary search trees. Acta Informatica 1(1), 14–25 (1971)
Mehlhorn, K.: Nearly optimal binary search trees. Acta Informatica 5(4), 287–295 (1975)
Mehlhorn, K., Näher, S.: Bounded ordered dictionaries in O (log log N) time and O(n) space. Information Processing Letters 35(4), 183–189 (1990)
Pătraşcu, M., Thorup, M.: Time-space trade-offs for predecessor search. In: STOC 2006: Proceedings of the 38th Annual ACM Symposium on Theory of Computing, pp. 232–240 (2006)
Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. Journal of the ACM 32(3), 652–686 (1985)
van Emde Boas, P.: Preserving order in a forest in less than logarithmic time and linear space. Information Processing Letters 6(3), 80–82 (1977)
Willard, D.E.: Log-logarithmic worst-case range queries are possible in space θ(N). Information Processing Letters 17(2), 81–84 (1983)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bose, P., Fagerberg, R., Howat, J., Morin, P. (2014). Biased Predecessor Search. In: Pardo, A., Viola, A. (eds) LATIN 2014: Theoretical Informatics. LATIN 2014. Lecture Notes in Computer Science, vol 8392. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54423-1_65
Download citation
DOI: https://doi.org/10.1007/978-3-642-54423-1_65
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-54422-4
Online ISBN: 978-3-642-54423-1
eBook Packages: Computer ScienceComputer Science (R0)