Skip to main content

Optimal Algorithms for Constrained 1-Center Problems

  • Conference paper
Book cover LATIN 2014: Theoretical Informatics (LATIN 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8392))

Included in the following conference series:

Abstract

We address the following problem: Given two subsets Γ and Φ of the plane, find the minimum enclosing circle of Γ whose center is constrained to lie on Φ. We first study the case when Γ is a set of n points and Φ is either a set of points, a set of segments (lines) or a simple polygon. We propose several algorithms, the first solves the problem when Φ is a set of m segments (or m points) in expected Θ((n + m)logω) time, where ω =  min {n, m}. Surprisingly, when Φ is a simple m-gon, we can improve the expected running time to Θ(m + nlogn). Moreover, if Γ is the set of vertices of a convex n-gon and Φ is a simple m-gon, we can solve the problem in expected Θ(n + m) time. We provide matching lower bounds in the algebraic computation tree model for all the algorithms presented in this paper. While proving these results, we obtained a Ω(n logm) lower bound for the following problem: Given two sets A and B in ℝ of sizes m and n, respectively, decide if A is a subset of B.

Research supported in part by NSERC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aggarwal, A., Guibas, L., Saxe, J., Shor, P.: A linear time algorithm for computing the Voronoi diagram of a convex polygon. In: Proceedings of STOC, pp. 39–45. ACM, New York (1987)

    Google Scholar 

  2. Ben-Or, M.: Lower bounds for algebraic computation trees. In: Proceedings of STOC, pp. 80–86. ACM, New York (1983)

    Google Scholar 

  3. Bose, P., Langerman, S., Roy, S.: Smallest enclosing circle centered on a query line segment. In: Proceedings of CCCG, pp. 167–170 (2008)

    Google Scholar 

  4. Bose, P., Toussaint, G.: Computing the constrained Euclidean, geodesic and link centre of a simple polygon with applications. In: Proceedings of CGI, pp. 102–111 (1996)

    Google Scholar 

  5. Bose, P., Wang, Q.: Facility location constrained to a polygonal domain. In: Rajsbaum, S. (ed.) LATIN 2002. LNCS, vol. 2286, pp. 153–164. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  6. Chan, T.M.: Geometric applications of a randomized optimization technique. Discrete and Computational Geometry 22, 547–567 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chazelle, B., Edelsbrunner, H., Guibas, L., Sharir, M.: Diameter, width, closest line pair, and parametric searching. DCG 10, 183–196 (1993)

    MATH  MathSciNet  Google Scholar 

  8. Hurtado, F., Sacristan, V., Toussaint, G.: Some constrained minimax and maximim location problems. Studies in Locational Analysis 15, 17–35 (2000)

    MATH  MathSciNet  Google Scholar 

  9. Joe, B., Simpson, R.B.: Corrections to Lee’s visibility polygon algorithm. BIT Numerical Mathematics 27, 458–473 (1987)

    Article  MATH  Google Scholar 

  10. Lee, D.T.: Farthest neighbor Voronoi diagrams and applications. Report 80-11-FC-04, Dept. Elect. Engrg. Comput. Sci. (1980)

    Google Scholar 

  11. Lee, D.T.: On finding the convex hull of a simple polygon. International Journal of Parallel Programming 12(2), 87–98 (1983)

    MATH  Google Scholar 

  12. Matousek, J.: Computing the center of planar point sets. Discrete and Computational Geometry 6, 221 (1991)

    Google Scholar 

  13. Matoušek, J.: Construction of epsilon nets. In: Proceedings of SCG, pp. 1–10. ACM, New York (1989)

    Google Scholar 

  14. Megiddo, N.: Linear-time algorithms for linear programming in ℝ3 and related problems. SIAM J. Comput. 12(4), 759–776 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  15. Preparata, F.: Minimum spanning circle. In: Preparata, F.P. (ed.) Steps in Computational Geometry. University of Illinois (1977)

    Google Scholar 

  16. Shamos, M., Hoey, D.: Closest-point problems. In: Proceedings of FOCS, pp. 151–162. IEEE Computer Society, Washington, DC (1975)

    Google Scholar 

  17. Sylvester, J.J.: A Question in the Geometry of Situation. Quarterly Journal of Pure and Applied Mathematics 1 (1857)

    Google Scholar 

  18. Yao, A.C.-C.: Decision tree complexity and Betti numbers. In: Proceedings of STOC, pp. 615–624. ACM, New York (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Barba, L., Bose, P., Langerman, S. (2014). Optimal Algorithms for Constrained 1-Center Problems. In: Pardo, A., Viola, A. (eds) LATIN 2014: Theoretical Informatics. LATIN 2014. Lecture Notes in Computer Science, vol 8392. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54423-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54423-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54422-4

  • Online ISBN: 978-3-642-54423-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics