Abstract
The formula-evaluation problem is defined recursively. A formula’s evaluation is the evaluation of a gate, the inputs of which are themselves independent formulas. Despite this pure recursive structure, the problem is combinatorially difficult for classical computers.
A quantum algorithm is given to evaluate formulas over any finite boolean gate set. Provided that the complexities of the input subformulas to any gate differ by at most a constant factor, the algorithm has optimal query complexity. After efficient preprocessing, it is nearly time optimal. The algorithm is derived using the span program framework. It corresponds to the composition of the individual span programs for each gate in the formula. Thus the algorithm’s structure reflects the formula’s recursive structure.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ambainis, A., Childs, A.M., Le Gall, F., Tani, S.: The quantum query complexity of certification. Quantum Inf. Comput. 10, 181–188 (2010) (arXiv:0903.1291[quant-ph])
Ambainis, A., Childs, A.M., Reichardt, B.W., Špalek, R., Zhang, S.: Any AND-OR formula of size \(N\) can be evaluated in time \({N}^{1/2+o(1)}\) on a quantum computer. SIAM J. Comput. 39(6), 2513–2530 (2010). (Earlier version in FOCS’07)
Ambainis, A.: Quantum lower bounds by quantum arguments. J. Comput. Syst. Sci. 64, 750–767 (2002). (arXiv:quant-ph/0002066. Earlier version in STOC’00)
Ambainis, A.: Polynomial degree and lower bounds in quantum complexity: collision and element distinctness with small range. Theory Comput. 1, 37–46 (2005). (arXiv:quant-ph/0305179)
Ambainis, A.: Polynomial degree vs. quantum query complexity. J. Comput. Syst. Sci. 72(2), 220–238 (2006). (arXiv:quant-ph/0305028. Earlier version in FOCS’03)
Ambainis, A.: A nearly optimal discrete query quantum algorithm for evaluating NAND formulas (2007). (arXiv:0704.3628[quant-ph])
Aaronson, S., Shi, Y.: Quantum lower bounds for the collision and the element distinctness problem. J. ACM 51(4), 595–605 (2004)
Bonet, M.L., Buss, S.R.: Size-depth tradeoffs for Boolean. Inf. Process. Lett. 49(3), 151–155 (1994)
Bennett, C.H., Bernstein, E., Brassard, G., Vazirani, U.: Strengths and weaknesses of quantum computing. SIAM J. Comput. 26(5), 1510–1523 (1997). (arXiv:quant-ph/9701001)
Beals, R., Buhrman, H., Cleve, R., Mosca, M., de Wolf, R.: Quantum lower bounds by polynomials. J. ACM 48(4), 778–797 (2001). (arXiv:quant-ph/9802049. Earlier version in FOCS’98)
Bshouty, N.H., Cleve, R., Eberly, W.: Size-depth tradeoffs for algebraic formulae. In: Proceedings of the 32nd IEEE FOCS, pp. 334–341 (1991)
Buhrman, H., Cleve, R., Wigderson, A.: Quantum vs. classical communication and computation. In: Proceedings of the 30th ACM STOC, pp. 63–68 (1998) (arXiv:quant-ph/9802040)
Buhrman, H., Cleve, R., de Wolf, R., Zalka, C.: Bounds for small-error and zero-error quantum algorithms. In: Proceedings of the 40th IEEE FOCS, pp. 358–368 (1999) (arXiv:cs/9904019[cs.CC])
Barnum, H., Saks, M.: A lower bound on the quantum query complexity of read-once functions. J. Comput. Syst. Sci. 69(2), 244–258 (2004). (arXiv:quant-ph/0201007)
Barnum, H., Saks, M., Szegedy, M.: Quantum query complexity and semidefinite programming. In: Proceedings of the 18th IEEE, Complexity, pp. 179–193 (2003)
Chiang, C.-F., Nagaj, D., Wocjan, P.: Efficient circuits for quantum walks. Quantum Inf. Comput. 10(5–6), 420–434 (2010) (arXiv:0903.3465 [quant-ph])
Farhi, E., Goldstone, J., Gutmann, S.: A quantum algorithm for the Hamiltonian NAND tree. Theory Comput. 4, 169–190 (2008). (arXiv:quant-ph/0702144)
Grover, L.K., Rudolph, T.: Creating superpositions that correspond to efficiently integrable probability distributions (2002) (arXiv:quant-ph/0208112)
Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th ACM STOC, pp. 212–219 (1996) (arXiv:quant-ph/9605043)
Grover, L.K.: Tradeoffs in the quantum search algorithm (2002) (arXiv:quant-ph/0201152)
Høyer, P., Lee, T., Špalek, R.: Tight adversary bounds for composite functions (2005) (arXiv:quant-ph/0509067)
Høyer, P., Lee, T., Špalek, R.: Source codes of semidefinite programs for ADV\(^{\pm }\). http://www.ucw.cz/robert/papers/adv/ (2006)
Høyer, P., Lee, T., Špalek, R.: Negative weights make adversaries stronger. In: Proceedings of the 39th ACM STOC, pp. 526–535 (2007) (arXiv:quant-ph/0611054)
Høyer, P., Mosca, M., de Wolf, R.: Quantum search on bounded-error inputs. ICALP 2003. LNCS, vol. 2719, pp. 291–299. Springer, Heidelberg (2003)
Høyer, P., Neerbek, J., Shi, Y.: Quantum complexities of ordered searching, sorting, and element distinctness. Algorithmica 34(4), 429–448 (2002). (arXiv:quant-ph/0102078. Special issue on Quantum Computation and Cryptography)
Heiman, Rafi, Newman, Ilan, Wigderson, Avi: On read-once threshold formulae and their randomized decision tree complexity. Theoret. Comput. Sci. 107(1), 63–76 (1993)
Heiman, R., Wigderson, A.: Randomized vs. deterministic decision tree complexity for read-once boolean functions. Comput. Complex. 1(4), 311–329 (1991). (Earlier version in Structure in Complexity Theory ’91)
Jayram, T.S., Kumar, R., Sivakumar, D.: Two applications of information complexity. In: Proceedings of the 35th ACM STOC, pp. 673–682 (2003)
Kitaev, A.Y., Shen, A.H., Vyalyi, M.N.: Classical and Quantum Computation, vol. 47 of Graduate Studies in Mathematics. American Mathematical Society, Providence (2002)
Karchmer, M., Wigderson, A.: On span programs. In: Proceedings of the 8th IEEE Symposium on Structure in Complexity Theory, pp. 102–111 (1993)
Laplante, S., Lee, T., Szegedy, M.: The quantum adversary method and classical formula size lower bounds. Comput. Complex. 15, 163–196 (2006). (arXiv:quant-ph/0501057. Earlier version in Complexity’05)
Laplante, S., Magniez, F.: Lower bounds for randomized and quantum query complexity using Kolmogorov arguments. In: Proceedings of the 19th IEEE, Complexity, pp. 294–304 (2004) (arXiv:quant-ph/0311189)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Reichardt, B.W.: Span programs and quantum query complexity: the general adversary bound is nearly tight for every boolean function. Extended abstract in: Proceedings of the 50th IEEE FOCS, pp. 544–551 (2009) (arXiv:0904.2759[quant-ph])
Reichardt, B.W.: Faster quantum algorithm for evaluating game trees. In: Proceedings of the 22nd ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 546–559 (2011) (arXiv:0907.1623[quant-ph])
Reichardt, B.W., Špalek, R.: Span-program-based quantum algorithm for evaluating formulas. In: Proceedings of the 40th ACM STOC, pp. 103–112 (2008) (arXiv:0710.2630[quant-ph])
Santha, M.: On the Monte Carlo decision tree complexity of read-once formulae. Random Struct. Algorithms 6(1):75–87 (1995) (Earlier version in Proc. 6th IEEE Structure in Complexity Theory, 1991)
Snir, M.: Lower bounds on probabilistic linear decision trees. Theor. Comput. Sci. 38, 69–82 (1985)
Špalek, R., Szegedy, M.: All quantum adversary methods are equivalent. Theor. Comput. 2(1):1–18 (2006) (arXiv:quant-ph/0409116. Earlier version in ICALP’05)
Saks, M., Wigderson, A.: Probabilistic Boolean decision trees and the complexity of evaluating game trees. In: Proceedings of the 27th IEEE FOCS, pp. 29–38 (1986)
Szegedy, M.: Quantum speed-up of Markov chain based algorithms. In: Proceedings of the 45th IEEE FOCS, pp. 32–41 (2004)
Zhang, S.: On the power of Ambainis’s lower bounds. Theor. Comput. Sci. 339(2–3):241–256 (2005) (arXiv:quant-ph/0311060. Earlier version in ICALP’04)
Acknowledgements
I thank Andrew Landahl and Robert Špalek for helpful discussions. Research supported by NSERC and ARO-DTO.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Reichardt, B.W. (2014). Span-Program-Based Quantum Algorithm for Evaluating Unbalanced Formulas. In: Bacon, D., Martin-Delgado, M., Roetteler, M. (eds) Theory of Quantum Computation, Communication, and Cryptography. TQC 2011. Lecture Notes in Computer Science(), vol 6745. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54429-3_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-54429-3_6
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-54428-6
Online ISBN: 978-3-642-54429-3
eBook Packages: Computer ScienceComputer Science (R0)