Skip to main content

Span-Program-Based Quantum Algorithm for Evaluating Unbalanced Formulas

  • Conference paper
  • First Online:
Theory of Quantum Computation, Communication, and Cryptography (TQC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6745))

Included in the following conference series:

  • 1890 Accesses

Abstract

The formula-evaluation problem is defined recursively. A formula’s evaluation is the evaluation of a gate, the inputs of which are themselves independent formulas. Despite this pure recursive structure, the problem is combinatorially difficult for classical computers.

A quantum algorithm is given to evaluate formulas over any finite boolean gate set. Provided that the complexities of the input subformulas to any gate differ by at most a constant factor, the algorithm has optimal query complexity. After efficient preprocessing, it is nearly time optimal. The algorithm is derived using the span program framework. It corresponds to the composition of the individual span programs for each gate in the formula. Thus the algorithm’s structure reflects the formula’s recursive structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Actually, [ACR+10, Section 7] only shows a bound of \(O(\sqrt{n} \, d^{3/2})\) queries, but this can be improved to \(O(\sqrt{n} \, d )\) using the bounds on \(\sigma _\pm (\varphi )\) below [ACR+10, Definition 1].

References

  1. Ambainis, A., Childs, A.M., Le Gall, F., Tani, S.: The quantum query complexity of certification. Quantum Inf. Comput. 10, 181–188 (2010) (arXiv:0903.1291[quant-ph])

  2. Ambainis, A., Childs, A.M., Reichardt, B.W., Špalek, R., Zhang, S.: Any AND-OR formula of size \(N\) can be evaluated in time \({N}^{1/2+o(1)}\) on a quantum computer. SIAM J. Comput. 39(6), 2513–2530 (2010). (Earlier version in FOCS’07)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ambainis, A.: Quantum lower bounds by quantum arguments. J. Comput. Syst. Sci. 64, 750–767 (2002). (arXiv:quant-ph/0002066. Earlier version in STOC’00)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ambainis, A.: Polynomial degree and lower bounds in quantum complexity: collision and element distinctness with small range. Theory Comput. 1, 37–46 (2005). (arXiv:quant-ph/0305179)

    Article  MathSciNet  Google Scholar 

  5. Ambainis, A.: Polynomial degree vs. quantum query complexity. J. Comput. Syst. Sci. 72(2), 220–238 (2006). (arXiv:quant-ph/0305028. Earlier version in FOCS’03)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ambainis, A.: A nearly optimal discrete query quantum algorithm for evaluating NAND formulas (2007). (arXiv:0704.3628[quant-ph])

  7. Aaronson, S., Shi, Y.: Quantum lower bounds for the collision and the element distinctness problem. J. ACM 51(4), 595–605 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bonet, M.L., Buss, S.R.: Size-depth tradeoffs for Boolean. Inf. Process. Lett. 49(3), 151–155 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bennett, C.H., Bernstein, E., Brassard, G., Vazirani, U.: Strengths and weaknesses of quantum computing. SIAM J. Comput. 26(5), 1510–1523 (1997). (arXiv:quant-ph/9701001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Beals, R., Buhrman, H., Cleve, R., Mosca, M., de Wolf, R.: Quantum lower bounds by polynomials. J. ACM 48(4), 778–797 (2001). (arXiv:quant-ph/9802049. Earlier version in FOCS’98)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bshouty, N.H., Cleve, R., Eberly, W.: Size-depth tradeoffs for algebraic formulae. In: Proceedings of the 32nd IEEE FOCS, pp. 334–341 (1991)

    Google Scholar 

  12. Buhrman, H., Cleve, R., Wigderson, A.: Quantum vs. classical communication and computation. In: Proceedings of the 30th ACM STOC, pp. 63–68 (1998) (arXiv:quant-ph/9802040)

    Google Scholar 

  13. Buhrman, H., Cleve, R., de Wolf, R., Zalka, C.: Bounds for small-error and zero-error quantum algorithms. In: Proceedings of the 40th IEEE FOCS, pp. 358–368 (1999) (arXiv:cs/9904019[cs.CC])

  14. Barnum, H., Saks, M.: A lower bound on the quantum query complexity of read-once functions. J. Comput. Syst. Sci. 69(2), 244–258 (2004). (arXiv:quant-ph/0201007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Barnum, H., Saks, M., Szegedy, M.: Quantum query complexity and semidefinite programming. In: Proceedings of the 18th IEEE, Complexity, pp. 179–193 (2003)

    Google Scholar 

  16. Chiang, C.-F., Nagaj, D., Wocjan, P.: Efficient circuits for quantum walks. Quantum Inf. Comput. 10(5–6), 420–434 (2010) (arXiv:0903.3465 [quant-ph])

    Google Scholar 

  17. Farhi, E., Goldstone, J., Gutmann, S.: A quantum algorithm for the Hamiltonian NAND tree. Theory Comput. 4, 169–190 (2008). (arXiv:quant-ph/0702144)

    Article  MathSciNet  Google Scholar 

  18. Grover, L.K., Rudolph, T.: Creating superpositions that correspond to efficiently integrable probability distributions (2002) (arXiv:quant-ph/0208112)

    Google Scholar 

  19. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th ACM STOC, pp. 212–219 (1996) (arXiv:quant-ph/9605043)

    Google Scholar 

  20. Grover, L.K.: Tradeoffs in the quantum search algorithm (2002) (arXiv:quant-ph/0201152)

    Google Scholar 

  21. Høyer, P., Lee, T., Špalek, R.: Tight adversary bounds for composite functions (2005) (arXiv:quant-ph/0509067)

    Google Scholar 

  22. Høyer, P., Lee, T., Špalek, R.: Source codes of semidefinite programs for ADV\(^{\pm }\). http://www.ucw.cz/robert/papers/adv/ (2006)

  23. Høyer, P., Lee, T., Špalek, R.: Negative weights make adversaries stronger. In: Proceedings of the 39th ACM STOC, pp. 526–535 (2007) (arXiv:quant-ph/0611054)

    Google Scholar 

  24. Høyer, P., Mosca, M., de Wolf, R.: Quantum search on bounded-error inputs. ICALP 2003. LNCS, vol. 2719, pp. 291–299. Springer, Heidelberg (2003)

    Google Scholar 

  25. Høyer, P., Neerbek, J., Shi, Y.: Quantum complexities of ordered searching, sorting, and element distinctness. Algorithmica 34(4), 429–448 (2002). (arXiv:quant-ph/0102078. Special issue on Quantum Computation and Cryptography)

    Article  MathSciNet  Google Scholar 

  26. Heiman, Rafi, Newman, Ilan, Wigderson, Avi: On read-once threshold formulae and their randomized decision tree complexity. Theoret. Comput. Sci. 107(1), 63–76 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  27. Heiman, R., Wigderson, A.: Randomized vs. deterministic decision tree complexity for read-once boolean functions. Comput. Complex. 1(4), 311–329 (1991). (Earlier version in Structure in Complexity Theory ’91)

    Article  MATH  MathSciNet  Google Scholar 

  28. Jayram, T.S., Kumar, R., Sivakumar, D.: Two applications of information complexity. In: Proceedings of the 35th ACM STOC, pp. 673–682 (2003)

    Google Scholar 

  29. Kitaev, A.Y., Shen, A.H., Vyalyi, M.N.: Classical and Quantum Computation, vol. 47 of Graduate Studies in Mathematics. American Mathematical Society, Providence (2002)

    Google Scholar 

  30. Karchmer, M., Wigderson, A.: On span programs. In: Proceedings of the 8th IEEE Symposium on Structure in Complexity Theory, pp. 102–111 (1993)

    Google Scholar 

  31. Laplante, S., Lee, T., Szegedy, M.: The quantum adversary method and classical formula size lower bounds. Comput. Complex. 15, 163–196 (2006). (arXiv:quant-ph/0501057. Earlier version in Complexity’05)

    Article  MATH  MathSciNet  Google Scholar 

  32. Laplante, S., Magniez, F.: Lower bounds for randomized and quantum query complexity using Kolmogorov arguments. In: Proceedings of the 19th IEEE, Complexity, pp. 294–304 (2004) (arXiv:quant-ph/0311189)

    Google Scholar 

  33. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  34. Reichardt, B.W.: Span programs and quantum query complexity: the general adversary bound is nearly tight for every boolean function. Extended abstract in: Proceedings of the 50th IEEE FOCS, pp. 544–551 (2009) (arXiv:0904.2759[quant-ph])

  35. Reichardt, B.W.: Faster quantum algorithm for evaluating game trees. In: Proceedings of the 22nd ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 546–559 (2011) (arXiv:0907.1623[quant-ph])

  36. Reichardt, B.W., Špalek, R.: Span-program-based quantum algorithm for evaluating formulas. In: Proceedings of the 40th ACM STOC, pp. 103–112 (2008) (arXiv:0710.2630[quant-ph])

  37. Santha, M.: On the Monte Carlo decision tree complexity of read-once formulae. Random Struct. Algorithms 6(1):75–87 (1995) (Earlier version in Proc. 6th IEEE Structure in Complexity Theory, 1991)

    Google Scholar 

  38. Snir, M.: Lower bounds on probabilistic linear decision trees. Theor. Comput. Sci. 38, 69–82 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  39. Špalek, R., Szegedy, M.: All quantum adversary methods are equivalent. Theor. Comput. 2(1):1–18 (2006) (arXiv:quant-ph/0409116. Earlier version in ICALP’05)

    Google Scholar 

  40. Saks, M., Wigderson, A.: Probabilistic Boolean decision trees and the complexity of evaluating game trees. In: Proceedings of the 27th IEEE FOCS, pp. 29–38 (1986)

    Google Scholar 

  41. Szegedy, M.: Quantum speed-up of Markov chain based algorithms. In: Proceedings of the 45th IEEE FOCS, pp. 32–41 (2004)

    Google Scholar 

  42. Zhang, S.: On the power of Ambainis’s lower bounds. Theor. Comput. Sci. 339(2–3):241–256 (2005) (arXiv:quant-ph/0311060. Earlier version in ICALP’04)

    Google Scholar 

Download references

Acknowledgements

I thank Andrew Landahl and Robert Špalek for helpful discussions. Research supported by NSERC and ARO-DTO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben W. Reichardt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Reichardt, B.W. (2014). Span-Program-Based Quantum Algorithm for Evaluating Unbalanced Formulas. In: Bacon, D., Martin-Delgado, M., Roetteler, M. (eds) Theory of Quantum Computation, Communication, and Cryptography. TQC 2011. Lecture Notes in Computer Science(), vol 6745. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54429-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54429-3_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54428-6

  • Online ISBN: 978-3-642-54429-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics