
Span-program-based quantum algorithm for evaluating formulas

Ben W. Reichardt∗

breic@caltech.edu
Robert Špalek†

spalek@google.com

Abstract

We present a time-efficient and query-optimal quantum algorithm for evaluating adversary-bound-
balanced formulas on an extended gate set. The allowed gates include arbitrary two- and three-bit gates,
as well as bounded fan-in AND, OR, PARITY and EQUAL gates. The technique behind the formula
evaluation algorithm is a new framework for quantum algorithms based on span programs.

For example, the classical complexity of evaluating the balanced ternary majority formula is unknown,
and the natural generalization of the standard balanced AND-OR formula evaluation algorithm is known
to be suboptimal. In contrast, a generalization of the optimal quantum {AND, OR, NOT} formula
evaluation algorithm is optimal for evaluating the balanced ternary majority formula.

1 Introduction

A formula ϕ on gate set S and of size N is a tree with N leaves, such that each internal node is a gate
from S on its children. The formula evaluation problem is to evaluate ϕ(x) given oracle access to the input
string x = x1x2 . . . xN . An optimal, O(

√
N)-query quantum algorithm is known to evaluate “approximately

balanced” formulas over gates S = {AND, OR, NOT} [ACR+07]. We extend the gate set S. We develop an
optimal quantum algorithm for evaluating a certain broad definition of “adversary-balanced” formulas, over
a gate set that includes arbitrary three-bit gates, as well as bounded fan-in EQUAL gates and bounded-size
{AND, OR, NOT, PARITY} formulas considered as single gates. “Adversary-balanced” means that the
inputs to a gate must have exactly equal adversary lower bounds.

The main idea of our algorithm is to consider a weighted graph G(ϕ) obtained by replacing each gate of
ϕ with a small gadget graph, and possibly also duplicating subformulas. Figure 1 gives several examples of
these gadgets, known classically as “span programs.” We relate the evaluation of the formula to the presence
or absence of small-eigenvalue eigenstates of the weighted adjacency matrix AG(ϕ) that are supported on the
root vertex of G(ϕ).

As a special case, for example, our algorithm evaluates the depth-d balanced ternary majority formula
using O(2d = N log3 2) queries, which is optimal. The classical complexity of evaluating this formula is known
only to lie between Ω((7/3)d) and o((8/3)d), and the previous best quantum algorithm, from [CRŠZ07],
used O(

√
5
d
) queries. The definition of “adversary-balanced” formulas also includes as a special case layered

formulas in which all gates at a given depth from the root are of the same type.

Classical and quantum background

The formula evaluation problem has been well-studied in the classical computer model. Classically, the
case S = {NAND} (or S = {NOR} equivalently) is best understood. A formula with only NAND, or

∗Institute for Quantum Information, California Institute of Technology. Supported by NSF Grants CCF-0524828 and PHY-
0456720, and by ARO Grant W911NF-05-1-0294.
†Google Inc. Work conducted while at the University of California, Berkeley, supported by NSF Grant CCF-0524837 and

ARO Grant DAAD 19-03-1-0082.

1

ar
X

iv
:0

71
0.

26
30

v1
 [

qu
an

t-
ph

]
 1

4
O

ct
 2

00
7

NOT

G(ρ)ρ
. . .

OR

. . .G(ρ1) G(ρk)ρ1 ρk

MAJ

ρ1 ρ2 ρ3 G(ρ3)G(ρ2)G(ρ1)

EQUAL

G(ρ1)ρ1 G(¬ρ1). . . ρkG(ρk) G(¬ρk)

Figure 1: To convert a formula ϕ to the corresponding graph G(ϕ), we recursively apply substitution rules
starting at the root to convert each gate into a gadget subgraph. Some of the rules are shown here, except
with the edge weights not indicated. The dangling edges at the top and bottom of each gadget are the input
edges and output edge, respectively. To compose two gates, the output edge of one is identified with an
input edge of the next.

only NOR, gates is equivalent to one with alternating levels of AND and OR gates, a so-called “AND-
OR formula.” One can compute the value of a balanced binary AND-OR formula with zero error in ex-
pected time O(N log2[(1+

√
33)/4]) = O(N0.754) [Sni85, SW86], and this is optimal even for bounded-error

algorithms [San95]. However, the complexity of evaluating balanced AND-OR formulas grows with the de-
gree of the gates. For example, in the extreme case of a single OR gate of degree N , the complexity is
Θ(N).

If we allow the use of a quantum computer with coherent oracle access to the input, however, then the
situation is much simpler; between Ω(

√
N) and N

1
2 +o(1) queries are necessary and sufficient to evaluate any

{AND, OR, NOT} formula with bounded error. In one extreme case, Grover search [Gro96, Gro02] evaluates
an OR gate of degree N using O(

√
N) oracle queries and O(

√
N log logN) time. In the other extreme

case, Farhi, Goldstone and Gutmann recently devised a breakthrough algorithm for evaluating balanced
binary AND-OR formulas in time and queries N

1
2 +o(1) [FGG07]. Ambainis [Amb07] gave an O(

√
N)-query

algorithm for evaluating balanced binary AND-OR trees. Childs, Reichardt, Špalek and Zhang [CRŠZ07]
improved this to O(

√
N) queries for balanced or “approximately balanced” formulas, and extended the

algorithm to evaluate arbitrary {AND, OR, NOT} formulas with N
1
2 +o(1) queries, and also N

1
2 +o(1) time

after a preprocessing step.
We will see in this paper that the formula evaluation problem has other nice features in the quantum

computing model. Classically, with the exception of {NAND}, {NOR} and a few trivial cases like {PARITY},
most gate sets are poorly understood. In 1986, Boppana asked the complexity of evaluating the balanced
ternary majority (MAJ3) function [SW86], and the answer is still unknown. The complexity is only known to
lie between Ω((7/3)d) and O((2.655 . . .)d) for a depth-d formula [JKS03].1 In particular, the näıve algorithm
of recursively evaluating two random immediate subformulas and then the third if they disagree, runs in
expected time O((8/3)d) and is suboptimal. This suggests that the balanced ternary majority function
is significantly different from the balanced k-ary NAND function, for which the above short-circuit-style
algorithm is known to be optimal.

In contrast, we show that the optimal quantum algorithm of [CRŠZ07] does extend to give an optimal
O(2d)-query algorithm for evaluating the balanced ternary majority formula. In fact, the algorithm also

1A slightly better analysis of the algorithm in [JKS03] gives O((2.6537 . . .)d), and the algorithm can likely be improved.

2

generalizes to a significantly larger gate set S, as already mentioned.
Even though the quantum speedups we find are only polynomial—at best we obtain a quadratic improve-

ment from N to
√
N queries—the fact that studying formula evaluation in a quantum computer model leads

to new connections between problems is, we feel, already sufficient motivation for the results. Additionally,
though, we feel that there are likely more connections and more algorithmic applications to be developed
or discovered. For example, our technique will make use of gadgets that are known in classical complex-
ity theory as “span programs” [KW93]. Span programs have been used to prove lower bounds on formula
size [KW93, BGW99] and monotone span programs are related to linear secret-sharing schemes [BGP96].
(Most, though not all [ABO99], applications are over finite fields, whereas we use the definition over C.) We
will only use combinations of constant-size span programs, but it is interesting to speculate that larger span
programs could directly give interesting new quantum algorithms.

Organization

After defining terms in Section 2 we formally state our result in Theorem 3.1, an optimal algorithm for
evaluating adversary-balanced formulas (Definition 2.8) over the gate set S of Definition 2.1.

In Section 4, we introduce span programs. We define span program P computing a function fP , its dual
span program P † computing ¬fP . By considering parts of P as a weighted adjacency matrix, we define the
corresponding weighted graph GP . We prove Lemma 4.6, which states that eigenvalue-zero eigenstates of
the adjacency matrix of GP compute the function fP in a certain dual-rail encoding.

Lemma 4.6 provides intuition for the more quantitative analysis we develop in Sections 5 and 6. In
Section 5, we analyze small-eigenvalue eigenstates (Theorem 5.6). Essentially, we rigorously upper-bound
higher-order terms in the eigenvalue λ to leave just the first-order term. In Section 6, we develop a quanti-
tative version of Lemma 4.6, at eigenvalue λ = 0.

The results for small-eigenvalue eigenstates, and for eigenvalue-zero eigenstates are closely related. In
Theorem 7, we restate Theorem 5.6 and Lemma 4.6 with a unified notation for small λ 6= 0 and for λ = 0.
In Section 9, we consider the different gates in S one at a time, writing down a span program P for each
and then immediately substituting it into Theorem 7. There are five cases.

In Section 11, we prove the main result, Theorem 3.1, by exhibiting the formula evaluation algorithm
based on span program spectral analysis (Theorem 10.1). The graph G(ϕ) of Figure 1 is GP for a certain
span program P . The algorithm is a straightforward application of phase estimation on a quantum walk on
G(ϕ).

Finally, we describe some extensions to the work in Section 12, and state open problems in Section 13.

2 Definitions

In this section, we define the gate set S and the type of “adversary-balanced” formulas on which our algorithm
will run optimally.

Definition 2.1 (Extended gate set S). Let

S ′ = {arbitrary two- or three- bit gates, O(1)-fan-in EQUAL gates}

S = S ′ ∪
{

O(1)-size {AND, OR, NOT, PARITY} formulas
on inputs that are themselves possibly elements of S ′

}
.

(2.1)

Example 2.2. Note that S includes simple gates like AND, as well as substantially more complicated gates
like MAJ3(x1, x2, x3) ∧ (x4 ⊕ x5 ⊕ · · · ⊕ xk−1 ⊕ (xk ∨ xk+1)), provided k = O(1). It does not include gates
from S ′ composed onto gates from S: for example MAJ3(x1, x2, x3 ∧ x4) /∈ S.

In order to define “adversary-balanced” formulas, we need to define the quantum adversary bound (with
nonnegative weights).

3

Table 1: Binary gates on up to three bits. Up to equivalences—permutation of inputs, complementation of
some or all inputs or output—there are fourteen binary gates on three inputs x1, x2, x3. Adversary bounds
for all functions on up to four bits have been computed by [HLŠ06], and see [RŠ07].

Gate Adversary lower bound
0 0
x1 1

x1 ∧ x2

√
2

x1 ⊕ x2 2
x1 ∧ x2 ∧ x3

√
3

x1 ⊕ x2 ⊕ x3 3
x1 ⊕ (x2 ∧ x3) 1 +

√
2

x1 ∨ (x2 ∧ x3)
√

3
(x1 ∧ x2) ∨ (x1 ∧ x3) 2

x1 ∨ (x2 ∧ x3) ∨ (x2 ∧ x3)
√

5
MAJ3(x1, x2, x3) = (x1 ∧ x2) ∨ ((x1 ∨ x2) ∧ x3) 2

MAJ3(x1, x2, x3) ∨ (x1 ∧ x2 ∧ x3)
√

7
EQUAL(x1, x2, x3) = (x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3) 3/

√
2

(x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x2)
√

3 +
√

3

Definition 2.3 (Nonnegative-weight adversary bound A(f)). Let f : {0, 1}k → {0, 1}. Define

A(f) = max
Γ≥0
Γ6=0

‖Γ‖
maxi ‖Γ ◦Di‖

, (2.2)

where Γ ◦ Di denotes the entrywise matrix product between Γ and Di a zero-one-valued matrix defined by
〈x|Di|y〉 = 1 if and only if bitstrings x and y differ in the ith coordinate, for i ∈ {1, . . . , k}. The maximum
is over all 2k × 2k symmetric matrices Γ with nonnegative entries satisfying 〈x|Γ|y〉 = 0 if f(x) = f(y).

The motivation for this definition is that A(f) gives a lower bound on the number of queries to the
phase-flip input oracle Ox required to evaluate f on input x, i.e., a lower bound on the quantum query
complexity:

Definition 2.4 (Phase-flip input oracle). The phase-flip input oracle for an input string x is a unitary
operator

Ox : |c〉 ⊗ |i〉 7→
{

(−1)xi |c〉 ⊗ |i〉 if c = 1
|c〉 ⊗ |i〉 if c = 0

Theorem 2.5 ([Amb06a, BSS03]). The two-sided ε-bounded error quantum query complexity of function f ,

Qε(f), is at least 1−2
√
ε(1−ε)
2 A(f).

Therefore, to match the lower bound of Theorem 2.5, our goal will be to use O(A(ϕ)) queries to evaluate ϕ.

Remark 2.6. We have used the nonnegative weight adversary bound A instead of the more general adversary
bound ADV± of [HLŠ07] because for any g ∈ S, A(g) = ADV±(g). See the open problems in Section 13.

Example 2.7. The adversary bounds for all binary functions on up to three bits are given in Table 1. The
adversary bounds for all functions on up to four bits are listed at the webpage [RŠ07], taken from [HLŠ06];
the list also includes ADV±(f) and the minimum-size {AND, OR, NOT} formula for each f .

4

Definition 2.8 (Adversary-balanced formula). For a gate g in formula ϕ, let ϕg denote the subformula of
ϕ rooted at g. Define ϕ to be adversary-balanced if for every gate g, the adversary lower bounds for its input
subformulas are the same; if g has children h1, . . . , hk, then A(ϕh1) = · · · = A(ϕhk).

To motivate Definition 2.8, we need a weak version of an adversary composition result from [HLŠ05, Amb06a]:

Theorem 2.9 ([HLŠ05, Cor. 4]). Let f = g◦(h1, . . . , hk), where A(h1) = · · · = A(hk) and ◦ denotes function
composition. Then A(f) = A(g)A(h1).

If ϕ is adversary-balanced, then by Theorem 2.9 A(ϕg) is the product of the gate adversary bounds along
any non-self-intersecting path χ from g up to an input, A(ϕg) =

∏
h∈χA(h). Note that A(¬f) = A(f), so

NOT gates can be inserted anywhere in an adversary-balanced formula.

Example 2.10. A special case of an adversary-balanced formula is a layered formula, in which all inputs are
at the same depth and all gates at the same depth are of the same type, with the same fan-in.

3 Result

Theorem 3.1. There exists a quantum algorithm that evaluates an adversary-balanced formula ϕ(x) over S
using O(A(ϕ)) queries to the phase-flip input oracle Ox. After efficient classical preprocessing independent
of the input x, and assuming O(1)-time coherent access to the preprocessed classical string, the running time
of the algorithm is A(ϕ)(logN)O(1).

Remark 3.2. By Theorem 2.5, the algorithm in Theorem 3.1 is query-optimal. Note though that A(ϕ)
is computed assuming that all N inputs to the formula ϕ are independent variables x1x2 . . . xN . If we are
promised that some of the inputs are the same, e.g., that xN = x1, then the algorithm still runs with the
same query efficiency. However it may no longer be optimal on the restricted input set.

A very special case of Theorem 3.1 solves in the quantum model the question posed by Boppana [SW86]:

Corollary 3.3. A balanced ternary majority formula of depth d (on N = 3d inputs) can be evaluated by a
quantum algorithm using O(2d) = O(N log3 2) input oracle queries and O(N log3 2(logN)O(1)) time.

From Table 1, the adversary bound A(MAJ3) = 2. By Theorem 2.9 the adversary bound for the balanced
MAJ3 formula of depth d is 2d, so O(2d) queries is indeed optimal.

4 Span programs and eigenvalue-zero graph eigenstates

A span program P is a certain linear-algebraic way of specifying a function fP . For details on span programs
applied in classical complexity theory, we can still recommend the original reference [KW93] as well as, for
example, the more recent [GP03]. In this section, we will show that by viewing a span program P as the
weighted adjacency matrix AGP of a certain graph GP , the true/false evaluation of P on input x corresponds
to the existence or nonexistence of a zero-eigenvalue eigenvector of AGP (x) supported on a distinguished
output node (Lemma 4.6). In turn, this will imply that giving a span program for a function immediately
gives a quantum algorithm for evaluating that function, or for evaluating formulas including that the function
as a gate. The quantum algorithm will work by spectral estimation on AGP (x). The algorithm’s running
time depends on detailed properties of the span program.

4.1 Span program definition

Definition 4.1 (Span program). A span program P consists of a nonzero “target” vector t, together
with “grouped input” vectors {vj : j ∈ J}. Each vj is labeled with a subset Xj of the literals
X = {x1, x1, . . . , xn, xn}. The size of P is defined as

∑
j |Xj |. To P corresponds a boolean function

fP : {0, 1}n → {0, 1}; defined by fP (x) = 1 (i.e., true) if and only if there exists a linear combination∑
j ajvj = t such that aj = 0 if any of the literals associated in Xj is zero (i.e., false).

5

Example 4.2. For example, the span program

t =
(

1
0

)
,
(
v1 v2 v3

)
=
(1√

3
1√
3

1√
3

1 ω ω2

)
,

where ω = e2πi/3 and with vi labeled by xi, computes the MAJ3 function. Indeed, at least two of the vi must
have nonzero coefficient in any linear combination equaling the target t. This span program corresponds
to the MAJ3 gate gadget of Section 9. Of course, the second row of (v1 v2 v3) could be any (α β γ)
with α, β, γ distinct and nonzero, and the span program would still compute MAJ3. The specific setting
(α, β, γ) = (1, ω, ω2) is used to optimize the running time of the quantum algorithm.

Remark 4.3. Let us clarify a few points in Definition 4.1.

• Although other fields can be used, for us all vectors and coefficients are over the complex numbers C.

• It is convenient, but nonstandard, to allow grouped inputs, i.e., literal subsets Xj with sizes possibly > 1,
instead of just single literals, to label the columns. A grouped input j can be thought of as evaluating
to the AND of all literals in Xj. A span program P with some |Xj | > 1 can be expanded out so that
all |Xj | ≤ 1, without increasing the size of P .

• It is sometimes convenient to allow Xj = ∅. In this case, vector vj is always available to use in the
linear combination; grouped input j always evaluates to true. However, it is a simple linear algebra
exercise to see that such vectors can always be eliminated from P without increasing the size or changing
t (or see [KW93, Theorem 7]).

• By a basis change, one can always change the target vector t to (1, 0, 0, . . . , 0).

4.2 Span program as a weighted adjacency matrix

Written out as a matrix, a span program P corresponds to the weighted adjacency matrix of a certain graph.
Consider a span program P with target vector t = (1, 0, . . . , 0), and grouped input vectors {vj : j ∈ J}.
Notation: For a tuple H = (h1, . . . , h|H|) and a set of variables {ah}, let aH = (ah1 , . . . , ah|H|). Assigning

an arbitrary order to the grouped inputs index set J , the grouped input vectors can be written in shorthand
as vJ .

To avoid any potential confusion of subscripts in the following, let us define three more tuples: I (“in-
puts”), O (“output”) and C (“constraints”). Let {Ij : j ∈ J} be pairwise disjoint tuples such that Ij indexes
Xj , and let I be the combined tuple of all Ij , j ∈ J (in an arbitrary order). (Since |Ij | = |Xj |, |I| = size(P).)
Let O = {1} be a singleton set indexing the first, “output” component of the grouped input vectors, and
let C index the remaining components. We may assume that the index tuples/sets I, J,O,C are pairwise
disjoint.

We will construct a graph GP on |I| + |J | + |C| + 2|O| vertices. Writing the grouped input vectors out

as a matrix, let
(
AOJ
ACJ

)
=
(
v1 · · · v|J|

)
; AOJ is a 1× |J | matrix row, and ACJ is a |C| × |J | matrix. We

may assume AOJ 6= 0; otherwise fP ≡ 0. Let AIJ =
∑
j∈J,i∈Ij |i〉〈j|; AIJ encodes the grouped inputs of P .

Now consider the bipartite graph GP of Figure 2, one half of whose weighted Hermitian adjacency matrix is

A =

 1 AOJ
0
:
0

ACJ
0
:
0

AIJ


aO aJ︷︸︸︷

bO}
bC}
bI

(4.1)

The edges (aj , bi) for j ∈ J and i ∈ Ij are “input edges,” while (aO, bO) is the “output edge.” The input and
output edges all have weight one. The weights of edges (bO, aj) for j ∈ J are given by AOJ (the set of first

6

bI|J|

a|J|
. . .

. . .

a1

bI1

bC
aO

bO

︷︸︸︷ ︷︸︸︷

︸ ︷︷ ︸

.

Figure 2: The bipartite graph GP corresponding to span program P ; the output edge is (aO, bO), while the
grouped inputs are a1, . . . , a|J|.

components of the grouped input vectors vJ), while the weights of edges (bc, aj) for c ∈ C, j ∈ J are given
by ACJ (the remaining components of vJ).2

4.3 Span program duality

A span program P computing a function fP immediately gives a dual span program, denoted P †, such that
fP † = ¬fP pointwise, i.e., for all x ∈ {0, 1}n, fP †(x) = ¬fP (x). This will be useful later because it will allow
us freely to insert NOT gates into the formula ϕ without worrying about any monotonicity constraints.

Definition 4.4 (Dual span program P †). Let P be a span program with target vector t = (1, 0, . . . , 0) and
grouped input vectors vj corresponding to grouped input Xj ⊆ X, for j ∈ J . As above, let 1 + |C| be the
dimension of the vectors t and {vj}, and recall the above definitions of AOJ , ACJ , AIJ .

Define span program P † as follows: the target vector is A†OJ , and the grouped input vectors are the
columns of the matrix (ACJ† AIJ†). The first |C| grouped input vectors—the columns of ACJ †—are each
associated with no literals. The other grouped input vectors—the columns of AIJ †—are all of the form |j〉
for some j ∈ J , i.e., they have a single 1 component and |J | − 1 zero components. For each j there are
|Ij | = |Xj | constraints |j〉; associate each to the negation of an element in Xj.

Note that the size of P † is the same as the size of P . The dimension of the vectors in P † is |J |, the
number of grouped input vectors in P . We have chosen the notation P † because the target and grouped
input vectors of P † put together give the Hermitian conjugate of a portion of the matrix A given in Eq. (4.1).
Different constructions of dual span programs have been given in [CF02, NNP05].

Lemma 4.5 (Span program duality). For all x ∈ {0, 1}n, fP †(x) = ¬fP (x).

Proof. The function fP (x) evaluates to zero if and only if the vector consisting of the true columns of AOJ
is linearly dependent on the rows of ACJ restricted to the same columns. In P † therefore, those entries of
the target AOJ † are given for free. For each false column j there is at least one false input i ∈ Ij ; this gives
us |j〉, and arbitrary multiples of |j〉, in P †.

4.4 Zero-eigenvalue eigenvectors of the span program adjacency matrix

Lemma 4.6. For an input x ∈ {0, 1}n, define a weighted graph GP (x) by deleting from GP the edges (aj , bi)
if the ith literal in Xj is true. Then there exists a zero-eigenvalue eigenstate of the weighted adjacency
matrix AGP (x) with support on vertex aO if and only if fP (x) = 1. After deleting the output edge (aO, bO),
there exists a zero-eigenvalue eigenstate of the remaining adjacency matrix with support on bO if and only if
fP (x) = 0.

2Of course, this correspondence also goes in the other direction, from bipartite graphs with certain marked input and output
vertices, to span programs.

7

Proof. Notation: Use aj , bi, bc, aO, bO to denote coefficients of a vector on the vertices of AGP . Let AIJ(x)
include only the edges to true inputs. Then the eigenvalue-λ eigenvector equations of AGP (x) are

λbC = ACJaJ (4.2a)
λbO = AOJaJ + aO (4.2b)

λaJ = AIJ(x)†bI +AOJ
†bO +ACJ

†bC (4.2c)
λbI = AIJ(x)aJ (4.2d)
λaO = bO (4.2e)

Being a (λ = 0)-eigenvalue eigenvector means that for each vertex, the weighted sum of the coefficients on
adjacent vertices must be zero. In particular, note that Eq. (4.2d) implies that aj can be nonzero only if
grouped input j is true. (If there is any dangling edge (aj , bi)—any false input in Xj—then Eq. (4.2d) says
aj = 0.) Since the graph is bipartite, at λ = 0 the a coefficients do not interact with the b coefficients.

Assume fP (x) = 1. Then by Definition 4.1 there exists a linear combination t =
∑
j ajvj = (AOJ +

ACJ)aJ for which aj = 0 if j is false. That is, AOJaJ = 1 and ACJaJ = 0. Setting aO = −1 and
bO = bI = bC = 0, all the equations in (4.2) are satisfied.

Conversely, if fP (x) = 0, then for every setting of aJ such that aj = 0 for false j, ACJaJ = 0 implies
AOJaJ = 0 (if ACJaJ = 0 and AOJaJ 6= 0, then we can scale all the coefficients so AOJaJ = 1, a
contradiction). Therefore, Eq. (4.2b) gives aO = 0.

Next, consider deleting the edge (aO, bO). We argue that there exists a zero-eigenvalue eigenstate of the
remaining adjacency matrix with support on bO if and only if fP (x) = 0. Now, an input bi can only possibly
be nonzero if the ith input is false; if i is true, then bi has been deleted. Lemma 4.5 for the dual span program
P † therefore implies that Eq. (4.2c) has a solution with bO nonzero if and only if fP †(x) = ¬fP (x) = 1. The
other equations can always be satisfied by letting aJ = 0.

Remark 4.7. By Lemma 4.6, we can think of the graph GP as giving a “dual-rail” encoding of the function
fP : there is a zero-eigenvalue eigenstate supported on aO if and only if fP (x) = 1, and there is one supported
on bO if and only if fP (x) = 0. This justifies calling the edge (aO, bO) the output edge of GP . Later, we
will plug together multiple span program gadgets, by identifying output edges of some gadgets with the input
edges of another.

We will need stronger, more quantitative, statements than Lemma 4.6—namely, Lemma 6.2 and Theo-
rem 5.6—but the lemma is still useful for giving intuition, motivation and direction.

5 Small-eigenvalue spectral analysis of AGP

In order to analyze the running time of a quantum algorithm based on span programs, we need to understand
not only zero-eigenvalue eigenstates of AGP (x), but also small-eigenvalue eigenstates. In this section, we will
investigate eigenstates with eigenvalue λ 6= 0. Since the graph is bipartite, we may, and will, assume without
loss of generality that λ > 0.

At small enough eigenvalues, the dual-rail encoding property described in Remark 4.7 still holds, but in
a slightly different fashion. At λ = 0, we saw that, roughly, the existence of an eigenvector supported on aO
meant that fP (x) = 1, while the existence of an eigenvector supported on bO meant that fP (x) = 0. For
small enough λ > 0, it will turn out instead that the function’s behavior corresponds to the output ratio
rO ≡ aO/bO. If fP (x) = 1, then the output ratio rO will turn out to be large and negative, roughly of order
−1/λ. If fP (x) = 0, then rO will be small and positive, roughly of order λ. In this section, we will make
this statement precise.

5.1 General span program spectral analysis

Definition 5.1 (Input ratios). Encode the input x to fP in the coefficient ratios ri = aj/bi for i ∈ Ij and
j ∈ J , provided aj , bi 6= 0. If the literal associated to input i is false, then let si = ri/λ; if it is true, then let

8

si = −1/(riλ). Assume that 0 < si ≤ Si for each i. If aj = bi = 0, then input i will not matter. To unify
notation, though, define ri in this case as either λSi or −1/(λSi) if i is true or false, respectively. Then
si = Si. The cases aj = 0, bi 6= 0 and aj 6= 0, bi = 0 will not arise.

In Lemma 4.6, we were given that either ai = 0 or bi = 0 according to whether input i evaluated to 0
or 1, which could be determined recursively by an earlier span program with output edge (ai, bi). Now, we
are given the nonzero input ratios rI , possibly determined by earlier span programs, and will solve for the
output ratio rO.

That is, letting R be a diagonal matrix with the ratios rI along its diagonal, we are given

bI = R−1AIJaJ , (5.1)

assuming that for no j ∈ J and i ∈ Ij is either aj = 0, bi 6= 0 or aj 6= 0, bi = 0. This assumption implies
that for each j either aj 6= 0 and all bi 6= 0, i ∈ Ij , or aj = 0 and all bi = 0, i ∈ Ij .

The eigenvector equations for eigenvalue λ, at internal vertices of the span program graph AGP are

λbC = ACJaJ (5.2a)
λbO = AOJaJ + aO (5.2b)

λaJ = AIJ
†bI +AOJ

†bO +ACJ
†bC (5.2c)

We want to allow other graphs, for other span programs, to be attached to the input vertices bI and to the
output vertex aO, so we will leave the equations at bI and aO to be solved in the adjacent span programs.

Now we will solve for the output ratio rO. Letting sO = rO/λ in case fP (x) = 0, or sO = −1/(λrO) in
case fP (x) = 1, we aim to show that 0 < sO ≤ SO for some SO. This statement is weaker for larger SO,
but as long as SO < 1/λ, it still allows for distinguishing case fP (x) = 0 from fP (x) = 1 based on |rO|. We
therefore hope that SO is not too much larger than the input bounds SI .

Lemma 5.2. Let rO = aO/bO be the output ratio for the gadget of Eq. (4.1) and Figure 2, solving Eqs. (5.1)
and (5.2). Let R̃ = (AIJ †R−1AIJ − λ)−1 (a diagonal matrix). Then aO = 0 if bO = 0, and otherwise,

rO = λ+AOJ

(
R̃− 1

λ
R̃ACJ

†(1 + 1
λACJ R̃ACJ

†)−1ACJ R̃

)
AOJ

† , (5.3)

provided that R̃ and (1 + 1
λACJ R̃ACJ

†)−1 exist.

Proof. Substituting Eqs. (5.1) and (5.2a) into (5.2c), and rearranging terms gives(
λ−AIJ †R−1AIJ −

1
λ
ACJ

†ACJ

)
aJ = AOJ

†bO .

From Eq. (5.2b), if bO 6= 0, then aO/bO = λ−AOJaJ/bO, so

rO = λ+AOJ(R̃−1 +
1
λ
ACJ

†ACJ)−1AOJ
† (5.4)

= λ+AOJ

(
R̃− 1

λ
R̃ACJ

†(1 + 1
λACJ R̃ACJ

†)−1ACJ R̃

)
AOJ

† ,

by the Woodbury matrix identity [GV96], provided that R̃ and (1 + 1
λACJ R̃ACJ

†)−1 exist.

Remark 5.3 (Form of Eq. (5.3)). Note from Eq. (5.3) that rO is a real number provided that all the input
ratios rI are themselves reals. Also, note that rO depends on ACJ only through ACJ †ACJ (see too Eq. (5.4) in
the proof); in particular, left-multiplying ACJ by U where U is any linear isometry (i.e., satisfying U†U = 1)
has no effect. Since the grouped input vectors vJ can be arbitrary in Definition 4.1, ACJ †ACJ is in general
an arbitrary k × k positive semidefinite matrix.

9

In fact, R̃ does exist provided λ is small enough. R̃jj for a grouped input j is analogous to an input ratio
ri: R̃jj is large and negative if j is true, and small and positive if j is false:

Lemma 5.4. Assume that 0 < λ ≤ ε/Si for an arbitrarily small positive constant ε and for all i ∈ I. Then
R̃ = (AIJ †R−1AIJ − λ)−1 exists. Moreover, consider any grouped input j ∈ J .

• If j evaluates to true, i.e., all inputs in Ij are true, let s̃j = −1/(λR̃jj) and let S̃j = 1 +
∑
i∈Ij Si.

• If j is false, i.e., at least one i ∈ Ij is false, let s̃j = R̃jj/λ and let S̃j =
(∑

false i ∈ Ij S
−1
i

)−1(1 +
ε′λmaxfalse i ∈ Ij Si), where ε′ is an arbitrarily small positive constant.

Then in each case, 0 < s̃j ≤ S̃j.

Proof. By definition,

R̃jj = (−λ+
∑
i∈Ij

r−1
i)−1 =

(
− λ− λ

∑
true i ∈ Ij

si +
1
λ

∑
false i ∈ Ij

s−1
i

)−1

.

If all inputs in Ij are true, then

s̃j = −1/(λR̃jj) = 1 +
∑
i∈Ij

si ,

so 1 < s̃j ≤ 1 +
∑
i∈Ij Si = S̃j .

Now assume at least one input in Ij is false. The true terms can be upper-bounded by λ
∑

true i ∈ Ij si ≤
λ
∑
i∈Ij Si ≤ |Ij |ε. On the other hand, if i is false then (λsi)−1 ≥ (λSi)−1 ≥ 1/ε. Therefore, s̃j > 0, and we

also get the claimed upper bound.

5.2 Two-dimensional span program spectral analysis

While software algebra packages like Mathematica can be used to investigate Eq. (5.3) (or Eqs. (5.1), (5.2)
directly), it turns out that considerable simplifications can be made in the case where there is at most one
constraint, |C| ≤ 1. Now let us specialize to this case. Then (1 + 1

λACJ R̃ACJ
†)−1 in Eq. (5.3) is simply a

scalar inverse. (In this case, the Woodbury formula says that (1 −M)−1 = 1 + M/(1 − trM) for M any
rank-one square matrix with trM 6= 1.)

Definition 5.5 (Single-constraint notation). If |C| ≤ 1, let |c〉 = ACJ
† =

∑
j cj |j〉 and let |o〉 = AOJ

† =∑
j oj |j〉 6= 0. (If there are no constraints, |C| = 0, then set |c〉 = 0.) Write the diagonal matrix R̃ as

R̃ =
∑
j R̃jj |j〉〈j|. Finally, let djj′ = cj′oj − cjoj′ = Det

(oj oj′
cj cj′

)
.

Our main goal of this section is to prove Theorem 5.6 below. Theorem 5.6 simplifies and carefully bounds
higher-order in λ terms in Eq. (5.3). For each of three different cases, it gives an expression for the leading
term that does not depend on λ and into which one can just plug in values of |o〉 and |c〉.

Theorem 5.6 (Single-constraint spectral analysis). Assume that 0 < λ ≤ ε/Si for an arbitrarily small
positive constant ε and for all i ∈ I. Assume that there is at most one constraint, |C| ≤ 1. Then either
aO = bO = 0 or aO, bO 6= 0.

• If fP (x) is true, recall that sO = −1
λrO

. Let |c(x)〉 =
∑

true j
cj√
S̃j
|j〉 and |o(x)〉 =

∑
true j

oj√
S̃j
|j〉. Then

sO =
−1
λrO

≤
[
〈o(x)|

(
1− |c(x)〉〈c(x)|
〈c(x)|c(x)〉

)
|o(x)〉

]−1

(1 + constant · λmax
j
S̃j) . (5.5)

10

• If fP (x) is false, recall sO = rO/λ. Then,

– If all grouped inputs are false, then

sO = constant + 〈o(x)|
(

1− |c(x)〉〈c(x)|
〈c(x)|c(x)〉

)
|o(x)〉 , (5.6)

where |o(x)〉 =
∑
j

√
S̃joj |j〉 and |c(x)〉 =

∑
j

√
S̃jcj |j〉.

– If there is at least one true grouped input j′, then

sO ≤ constant +
1
|cj′ |2

∑
false j

|djj′ |2S̃j
(

1 + ε′λmax
j
S̃j

)
. (5.7)

In the above equations, ε′ is an arbitrarily small constant, and constants depend only on the weights |o〉, |c〉,
not on the bounds S̃J .

Remark 5.7. For a vector |v〉 and a projection Π, the expression 〈v|(1 − Π)|v〉 is the squared distance of
endpoint of |v〉 to the subspace defined by Π. In particular, this distance can only increase if one scales up
any coordinate of the ambient space. Therefore, the right-hand sides of the expressions in Theorem 5.6 are
all monotone increasing functions of each S̃j.

Remark 5.8. The true case of Theorem 5.6 involves only S̃j for true inputs j, and the false cases involve
only S̃j for false inputs j. This is similar to Lemma 4.6, and is because the graph is bipartite. If the output
is true, then false inputs contribute only higher-order terms that are easily bounded, and vice versa. We
conjecture that the same simplification should hold in the general case Eq. (5.3).

Remark 5.9. By assuming |C| ≤ 1, we reduce the expressive power of span programs of a given complexity.
Because we are allowing grouped inputs with |Ij | > 1 possibly, any function can be computed by a span
program with |C| = 0, based on the disjunctive normal form (DNF) formula expansion. However the DNF
span program may not be optimal. It turns out that span programs with |C| ≤ 1 do suffice to compute
all three-bit functions optimally (Section 9). For four-bit functions, this seems no longer to hold, and in
Section 12.1 we discuss analyses of larger span programs carried out with Mathematica.3 We suspect that
Theorem 5.6 can be generalized, and conjecture in particular that Eqs. (5.5) and (5.6) hold even for |C| > 1,
with the projections |c(x)〉〈c(x)|/〈c(x)|c(x)〉 replaced by projections onto the analogous subspace. (See also
Lemma 6.2.)

Lemma 5.10. Assume that there is at most one constraint, |C| ≤ 1. Then the output ratio rO = aO/bO is

rO =
1
2

∑
j,j′ |djj′ |2R̃jjR̃j′j′ + λ〈o|R̃|o〉

〈c|R̃|c〉+ λ
+ λ , (5.8)

provided that R̃ exists, and that 〈c|R̃|c〉 =
∑
j |cj |2R̃jj 6= −λ.

Proof. Provided that R̃ exists and 〈c|R̃|c〉 6= −λ, we have from Eq. (5.3) that

rO = λ+ 〈o|

(
R̃− R̃|c〉〈c|R̃

〈c|R̃|c〉+ λ

)
|o〉

= λ+
〈c|R̃|c〉〈o|R̃|o〉 − |〈c|R̃|o〉|2 + λ〈o|R̃|o〉

〈c|R̃|c〉+ λ
.

(5.9)

3 Another generalization that is often helpful in practice is to allow variable weights on the inputs in an Ij . An equivalent
effect can be achieved, though, by inserting two NOT gates before each input, and adjusting the ratio of the edge weights.
Here, we will assume that all input and output edges always have weight one.

11

The numerator can be further simplified:

〈c|R̃|c〉〈o|R̃|o〉 − |〈c|R̃|o〉|2 =
∑
j,j′

R̃jjR̃j′j′ |cj |2|oj′ |2 −
∣∣∣∑
j

R̃jjc
∗
joj

∣∣∣2
=
∑
j,j′

R̃jjR̃j′j′
(
|cjoj′ |2 − (cjoj′)∗(cj′oj)

)
= 1

2

∑
j,j′

R̃jjR̃j′j′

(
|cjoj′ |2 − (cjoj′)∗(cj′oj)

+|cj′oj |2 − (cj′oj)∗(cjoj′)

)
= 1

2

∑
j,j′

R̃jjR̃j′j′ |djj′ |2 ,

(5.10)

where djj′ = cj′oj − cjoj′ (Definition 5.5). Substituting (5.10) back into (5.9), we obtain Eq. (5.8).

Let us now justify the two provisions of Lemma 5.10. In the proof of Corollary 5.11, and in the rest of
our computations, we will frequently use ε, ε′, etc., to mean arbitrarily small positive constants.

Corollary 5.11. Assuming that |C| ≤ 1 and λSi is at most an arbitrarily small constant for all i ∈ I: R̃jj
exists for all j ∈ J , and 〈c|R̃|c〉 6= −λ.

Proof. R̃jj exists by Lemma 5.4. To show 〈c|R̃|c〉 6= −λ, we will use the assumption that the weights cj are
constants. Each |cj | is upper-bounded by a constant, and either cj = 0 or |cj | is lower-bounded by a positive
constant.

Now, 〈c|R̃|c〉 =
∑
j |cj |2R̃jj =

∑
true j |cj |2

−1
λs̃j

+
∑

false j |cj |2λs̃j . If all the grouped inputs j are false,

then 〈c|R̃|c〉 > 0. If there is at least one true term with nonzero coefficient, though, then upper-bound∑
false j |cj |2λs̃j ≤ ε′ for an arbitrarily small constant ε′ This uses that each λs̃j ≤ ε, that the coefficients

|cj |2 are bounded by constants, and that there are only a constant number of terms. On the other hand,∑
true j |cj |2

−1
λs̃j
≤ −1/ε′′, since each nonzero coefficient is bounded away from zero. Therefore, 〈c|R̃|c〉 ≤

−1/ε′′′ < −λ.

Proof of Theorem 5.6. Case O is true: If the output is true, then either djj′ 6= 0 for some true j, j′, or
djj′ = 0 for all true j, j′. In the latter case, the vectors {(oj , cj) : j true} are all proportional to each
other; for the output to be true it must be that cj = 0 for all true j. Since we may assume that for
no j is cj = oj = 0, for then the span program would not depend on j, we may assume oj 6= 0 for all
true j.

From Eq. (5.8), we are trying to upper-bound

sO =
−1
λrO

=
−λ−

∑
j |cj |2R̃jj

λ
2

∑
j,j′ |djj′ |2R̃jjR̃j′j′ + λ2

∑
j(|cj |2 + |oj |2)R̃jj + λ3

. (5.11)

• First, assume that there exist true j, j′, such that djj′ = Det
(oj oj′
cj cj′

)
6= 0.

The numerator and denominator in Eq. (5.11) are both positive, from Lemma 5.4, so sO > 0.
Drop negative terms from the numerator, and positive terms besides those multiplying |djj′ |2 with
j, j′ both true from the denominator. This leaves

sO ≤
−
∑

true j |cj |2R̃jj
λ
2

∑
true j, j′ |djj′ |2R̃jjR̃j′j′ + λ2

∑
true j(|cj |2 + |oj |2)R̃jj

=
1
λ

∑
true j |cj |2

1
s̃j

1
2λ

∑
true j, j′ |djj′ |2

1
s̃j s̃j′

− λ
∑

true j(|cj |2 + |oj |2) 1
s̃j

12

Let t1 =
∑

true j |cj |2
1
s̃j

, t2 =
∑

true j |oj |2
1
s̃j

, and t3 = 1
2

∑
true j, j′ |djj′ |2

1
s̃j s̃j′

. Assume that

t1/t3, t2/t3 ≤ ε′

λ , where ε′ is an arbitrarily small constant. Then, we get

sO ≤
t1

t3 − λ2(t1 + t2)

=
t1
t3

(
1 + λ2 t1/t3 + t2/t3

1− λ2(t1/t3 + t2/t3)

)
≤ t1
t3

(1 + λε) , (5.12)

which is almost our goal, Eq. (5.5). By Eq. (5.10), t3/t1 can be interpreted as the squared distance
from a vector to a subspace. However, to get from Eq. (5.12) to Eq. (5.5), we need to show that
t1/t3 is maximized by setting each s̃j to S̃j . This is geometrically clear, because stretching a
vector space can only increase the distance from a point to a certain subspace.
Therefore, it suffices to bound crudely t1/t3, t2/t3 ≤ ε′/λ. Since t2/t3 has the same form as t1/t3,
except with c replaced by o, we will only consider t1/t3:

t1
t3

=

∑
true j |cj |2

1
s̃j

1
2

∑
true j, j′ |djj′ |2

1
s̃j s̃j′

≤
∑

true j

|cj |2 min
true j′

s̃j′

|djj′ |2
.

The denominator in the above expression is nonzero for each j. Indeed, fix some true j′, j′′ such
that dj′j′′ 6= 0. (Equivalently, the vectors (oj′ , cj′) and (oj′′ , cj′′) are linearly independent of each
other.) Then if j is true and (oj , cj) 6= (0, 0), at least one of djj′ , djj′′ must be nonzero. Therefore,
using the small-λ assumption, that s̃j ≤ ε′′/λ, we get t1/t3 ≤ ε′/λ. Similarly, t2/t3 ≤ ε′/λ, so
Eq. (5.12) holds.

• Next, consider the case that all true j have cj = 0 and oj 6= 0. In particular, djj′ = 0 if j and j′

are both true, and djj′ = ojcj′ if j is true and j′ false.
In this case, Eq. (5.11) simplifies to

sO =
λ+

∑
false j |cj |2R̃jj

−λ
∑

true j
false j′

|oj |2|cj′ |2R̃jjR̃j′j′ −
λ

2

∑
false j, j′

|djj′ |2R̃jjR̃j′j′

−λ2
∑

true j

|oj |2R̃jj − λ2
∑

false j

(|cj |2 + |oj |2)R̃jj − λ3


=

1 +
∑

false j |cj |2s̃j
∑

true j
false j′

|oj |2|cj′ |2
s̃j′

s̃j
+
∑

true j

|oj |2/s̃j

−λ
2

2

∑
false j, j′

|djj′ |2s̃j s̃j′ − λ2
∑

false j

(|cj |2 + |oj |2)s̃j − λ2



.

Note that by Lemma 5.4, λ2
∑

false j(|cj |2 + |oj |2)s̃j/
∑

true j(|oj |2/s̃j) ≤ λεmaxj S̃j . Also, since

13

|djj′ | ≤ 2 max{|cjoj′ |, |cj′oj |}, we may bound

λ2

2

∑
false j, j′ |djj′ |2s̃j s̃j′∑

true j′′

false j′
|oj′′ |2|cj′ |2

s̃j′

s̃j′′

≤
4λ2

∑
false j, j′ |cj′ |2|oj |2s̃j s̃j′∑

true j′′

false j′
|oj′′ |2|cj′ |2

s̃j′

s̃j′′

≤ 4λ2
∑

false j, j′

���|cj′ |2|oj |2s̃j��̃sj′
|oj′′ |2���|cj′ |2��̃sj′/s̃j′′

≤ λεmax
j
S̃j ,

where we have fixed some true j′′ in the second inequality. Therefore, sO > 0, and we can drop
all the negative terms from the denominator, including −λ, at a cost of a multiplicative factor of
at most (1 + constant · λmaxj S̃j):

sO ≤
1 +

∑
false j′ |cj′ |2s̃j′∑

true j
false j′

|oj |2|cj′ |2
s̃j′

S̃j
+
∑

true j |oj |2/S̃j
(1 + constant · λmax

j
S̃j)

=
1∑

true j |oj |2/S̃j
(1 + constant · λmax

j
S̃j) , (5.13)

by canceling a factor of (1 +
∑

false j′ |cj′ |2s̃j′).

Case O is false: Otherwise the output is false. Therefore, there are no true j with cj = 0 and oj 6= 0; and
for all true j, j′, djj′ = 0. (Consider a graph on J with an edge (j, j′) when djj′ = 0. Then the graph
consists of disjoint cliques. All the true variables need to lie within one of the cliques for fP (x) to be
false.)

We have from Eq. (5.8)

sO =
rO
λ

= 1 +
1

2λ

∑
j,j′ |djj′ |2R̃jjR̃j′j′ +

∑
j |oj |2R̃jj

λ+
∑
j |cj |2R̃jj

. (5.14)

There are once again two cases. Either all inputs j are false, or there exists at least one true input j
with cj 6= 0.

• First, consider the case where all inputs are false. Then both the numerator and the denominator
in Eq. (5.14) are positive, by Lemma 5.4, so sO > 0. We may simplify Eq. (5.14) to

sO = 1 +
1
2

∑
j,j′ |djj′ |2s̃j s̃j′ +

∑
j |oj |2s̃j

1 +
∑
j |cj |2s̃j

.

We may bound (
∑
j:cj 6=0|oj |2s̃j)/(

∑
j |cj |2s̃j) ≤

∑
j:cj 6=0

|oj |2
|cj |2 is at most a constant. Therefore, we

obtain

sO ≤ const. +

1
2

∑
j:cj 6=0

j′:cj′ 6=0

|djj′ |2s̃j s̃j′ +
∑

j:cj=0

j′:cj′ 6=0

|djj′ |2s̃j s̃j′ +
∑
j:cj=0|oj |2s̃j

1 +
∑
j |cj |2s̃j

,

where we have used that djj′ = 0 if cj = cj′ = 0. Since djj′ = ojcj′ if cj = 0, the second two
terms in the numerator share a common factor of

∑
j:cj=0|oj |2s̃j , whence

sO ≤ const. +

1
2

∑
j:cj 6=0

j′:cj′ 6=0

|djj′ |2s̃j s̃j′∑
j |cj |2s̃j

+
∑
j:cj=0

|oj |2s̃j (5.15)

= const. +
1
2

∑
j,j′ |djj′ |2s̃j s̃j′∑
j |cj |2s̃j

.

14

It remains to maximize over {s̃j}. Since the second term in the above sum is 〈o(x)|(1 −
|c(x)〉〈c(x)|/〈c(x)|c(x)〉)|o(x)〉 with |c(x)〉 =

∑
j

√
s̃jcj |j〉 and |o(x)〉 =

∑
j

√
s̃joj |j〉 (see

Eq. (5.10)), the maximum is achieved with each s̃j = S̃j .
• Next, consider the case that there is at least one true input. We may assume that each true j

has cj 6= 0—otherwise, if cj = 0 and oj 6= 0 the output would be true. Also, if j and j′ are
both true, then djj′ must be zero. Therefore, all the vectors {(oj , cj) : j true} lie in the same
one-dimensional space. We may fix some true j′′ and write (oj , cj) = αj(oj′′ , cj′′) for j true.
By Lemma 5.4, both the numerator and the denominator in Eq. (5.14) are negative, so sO > 0. In
the numerator of Eq. (5.14), upper-bound −

∑
j |oj |2R̃jj ≤

∑
true j |oj |2

1
λs̃j

by dropping negative

terms. Upper-bound − 1
2λ

∑
j,j′ |djj′ |2R̃jjR̃j′j′ ≤

1
λ

∑
true j
false j′

|djj′ |2
s̃j′

s̃j
. In the denominator, bound

λ
∑

false j |cj |2s̃j ≤ ε. Altogether, we have after canceling factors of 1/λ,

sO ≤ 1 +

∑
true j
false j′

|djj′ |2
s̃j′

s̃j
+
∑

true j |oj |2
1
s̃j∑

true j |cj |2
1
s̃j
− λε

Since cj 6= 0 for each true j, the ratio (
∑

true j |oj |2
1
s̃j

)/(
∑

true j |cj |2
1
s̃j

) ≤
∑

true j |oj |2/|cj |2 is a

constant. Since also
∑

true j |cj |2
1
s̃j
≥ constant/maxtrue j S̃j , we conclude

sO ≤ constant +

∑
true j
false j′

|djj′ |2
s̃j′

s̃j∑
true j |cj |2/s̃j

(
1 + ε′λ max

true j
S̃j

)

= constant +

∑
true j
false j′

|αj |2|dj′′j′ |2
s̃j′

s̃j∑
true j |αj |2|cj′′ |2/s̃j

(
1 + ε′λ max

true j
S̃j

)
= constant +

1
|cj′′ |2

∑
false j′

|dj′′j′ |2s̃j′
(

1 + ε′λ max
true j

S̃j

)
,

by canceling a factor of
∑

true j |αj |2/s̃j in the last step. Eq. (5.7) follows by s̃j′ ≤ S̃j′ .

This concludes our general analysis for λ 6= 0. In following sections, we will upper-bound the right-hand
sides of Eqs. (5.5), (5.6) and (5.7) by substituting specific choices of |c〉 and |o〉.

6 Quantitative eigenvalue-zero spectral analysis

We need a stronger version of Lemma 4.6, that puts quantitative lower bounds on γO, the achievable squared
magnitude, in a unity-normalized eigenvalue-zero eigenvector, on the output node either aO if fP (x) = 1, or
bO if fP (x) = 0.

In this analysis, the achievable squared magnitude γO will be analogous to the upper-bound SO in the
small λ analysis. In fact, it will turn out that the dependence of γO on the input γi’s is identical to the
dependence of 1/SO on the input 1/Si’s in Theorem 5.6, except for different “fudge factors.”

Similarly to Lemma 5.4, let us start by grouping together and renormalizing the eigenvalue-zero eigen-
vectors of graphs entering at a single grouped input j ∈ J . Recall Figure 2 and Eq. (5.2). The vertex aj is a
shared output node of all the inputs i ∈ Ij , which can have support if and only if all i ∈ Ij evaluate to true.

Lemma 6.1. If grouped input j evaluates to true, then the achievable squared magnitude on aj in a nor-
malized eigenvalue-zero eigenvector of the vertices above j is at least γj, where

1
γj
≤ 1 +

∑
i∈Ij

1
γi

. (6.1)

15

If grouped input j evaluates to false, then the achievable squared total of magnitudes on all {bi : i ∈ Ij} in a
normalized eigenvalue-zero eigenvector of the vertices above j is at least γj, where

γj =
∑

false i ∈ Ij

γi . (6.2)

Proof. Grouped input j evaluates to true when all i ∈ Ij are true. Scale all the input graphs meeting at aj
so that their coefficient at aj is 1. Then the total norm is

1
γj

= 1 +
∑
i∈Ij

1
γi

(1− γi) =
∑
i∈Ij

1
γi
− (|Ij | − 1) ≤ 1 +

∑
i∈Ij

1
γi

.

Grouped input j evaluates to false when at least one i ∈ Ij is false. Now aj is zero necessarily, so the
eigenvectors for the different false i ∈ Ij can be scaled by arbitrary fractions gi. (For true inputs i ∈ Ij ,
the entire subgraph attached to bi is zeroed out.) Our goal is to maximize the sum

∑
false i ∈ Ij gi

√
γi

subject to the constraint that the total norm is one:
∑
i|gi|2 = 1. The maximum is clearly achieved for

gi =
√
γi/
√∑

false i′ γi′ , so the squared maximum is:

γj =
∑

false i ∈ Ij

γi .

Lemma 6.2. The achievable squared magnitude γO on the output node in a unity-normalized eigenvalue-zero
eigenvector satisfies:

• If the output fP (x) is true, then

1/γO ≤
[
〈o(x)|

(
1− |c(x)〉〈c(x)|
〈c(x)|c(x)〉

)
|o(x)〉

]−1

+ constant , (6.3)

where |c(x)〉 =
∑

true j

√
γjcj |j〉 and |o(x)〉 =

∑
true j

√
γjoj |j〉.

• If the output is false, and all inputs j are false, then

1/γO ≤ 〈o(x)|
(

1− |c(x)〉〈c(x)|
〈c(x)|c(x)〉

)
|o(x)〉+ constant , (6.4)

where |c(x)〉 =
∑

false j
cj√
γj
|j〉 and |o(x)〉 =

∑
false j

oj√
γj
|j〉.

• If the output is false, and there is at least one true input j′, then

1/γO ≤
1
|cj′ |2

∑
false j

|djj′ |2/γj + constant . (6.5)

Proof. Case O is true: If fP (x) = 1, then we want to choose gJ so as to maximize the magnitude of
−aO = AOJaJ =

∑
true j o

∗
jgj
√
γj = 〈o(x)|g〉, such that ACJaJ =

∑
true j c

∗
jgj
√
γj = 〈c(x)|g〉 = 0

and
∑
j |gj |2 = 〈g|g〉 = 1 (Eqs. (5.2a) and (5.2b) at λ = 0). Clearly the maximum is achieved for |g〉

proportional to |g̃〉 =
(
1− |c(x)〉〈c(x)|

〈c(x)|c(x)〉
)
|o(x)〉. Then

|aO|2 =
|〈o(x)|g̃〉|2

〈g̃|g̃〉
= 〈o(x)|

(
1− |c(x)〉〈c(x)|
〈c(x)|c(x)〉

)
|o(x)〉 .

However, we have not fully normalized. We need to divide further by (1 + |aO|2). We obtain

1
γO

=
1 + |aO|2

|aO|2
=

1
|aO|2

+ 1 .

Compare to Eq. (5.5).

16

Case O is false: Again we will scale the jth false input’s eigenvector by gj ; the total norm of the eigenvector
at and above the nodes aJ is

∑
false j |gj |2 = 〈g|g〉. Our goal is to choose |g〉, 〈g|g〉 = 1, to maximize

|bO|2, where by Eq. (5.2c) at λ = 0, for each j ∈ J either 0 = ojbO + cjbC + gj
√
γj if j is false, or

0 = ojbO + cjbC if j is true.

• If there is at least one true input j′, then that input fixes the relationship between bC and bO.
We must have bC = − oj′cj′ bO, with cj′ 6= 0 necessarily. Therefore, for all false j,

bj = gj
√
γj = −ojbO − cjbC = −djj

′

cj′
bO .

So, gj = −1√
γj

djj′

cj′
bO, and

1
γO

=

∑
false j |gj |2 + |bO|2 + |bC |2

|bO|2
=

∑
false j |djj′ |2/γj
|cj′ |2

+ 1 +
|oj′ |2

|cj′ |2
.

Compare to Eq. (5.7).

• If all inputs j are false, then we want to maximize b2O such that
∑
j |gj |2 = 1 and for all j,

0 = ojbO + cjbC + gj
√
γj . There is no true j to fix the value of bC in terms of bO, so let

β = bC/bO. Then gj = −1√
γj

(oj + βcj)bO = −bO〈j|(|o(x)〉 + β|c(x)〉). We want to choose β to
maximize

b2O
〈g|g〉

=
1

‖|o(x)〉+ β|c(x)〉‖2
.

It is geometrically clear that the minimum is achieved for β = −〈c(x)|o(x)〉/〈c(x)|c(x)〉, so

1
γO

=
〈g|g〉+ |bO|2 + |bC |2

|bO|2
= 〈o(x)|

(
1− |c(x)〉〈c(x)|
〈c(x)|c(x)〉

)
|o(x)〉+ 1 + |β|2 .

Note that |β| ≤ 1P
j |cj |2/γj

∑
j

1
γj
|c∗joj | ≤

∑
j |oj |/|cj | is O(1). Compare to Eq. (5.6).

Remark 6.3. The analysis behind Eqs. (6.3) and (6.4) generalizes immediately to |C| > 1 if we replace
the projection |c(x)〉〈c(x)|/〈c(x)|c(x)〉 with the projection onto the span of the similarly scaled rows of ACJ .
Eq. (6.5) also generalizes, but in a more complicated manner.

7 Unified statement of results for λ = 0 and small λ > 0

Except for a different fudge factor, the expressions in Lemma 6.2 are identical to those in Theorem 5.6, after
the substititutions γO → 1/SO and γi → 1/S̃j .4 Let us therefore restate the two results in a unified form,
with a convenient unified notation.

Definition 7.1 (Unified notation). Consider a span program P with |C| ≤ 1. For inputs i ∈ I, let

σi =
{

Si if λ > 0
1/γi if λ = 0 (7.1)

If σi depends on the true/false evaluation of i, then use whichever bound is larger.

4Should this be surprising? Perhaps, one expects the λ = 0 behavior to arise as the limiting behavior taking λ→ 0+. (Even
believing this, though, one would need to compute how quickly the behavior approached its limit.) However, this is not clear,
because for example the λ = 0 eigenspace is often highly degenerate while eigenspaces for λ 6= 0 are generically nondegenerate.

17

Similarly, let σO be either SO or 1/γO. Recall that a grouped input j evaluates to true iff all inputs in Ij
are true. For grouped inputs j ∈ J and for a given input x, let

σ̃j =

{
max{

∑
i∈Ij σi, 1} if j is true

(
∑

false i ∈ Ij σ
−1
i)−1 if j is false (7.2)

(In the first case, we take the maximum with 1 to handle the case Ij = ∅.) A convenient special case is
when all σi are equal, in which case σ̃j is either max{|Ij |σi, 1}) or σi/#{false i ∈ Ij}, if j is true or false,
respectively.

For a vector |v〉 =
∑
j vj |j〉, let

|v(x)〉 =

{ ∑
true j

vj√
σ̃j
|j〉 if fP (x) = 1∑

false j

√
σ̃jvj |j〉 if fP (x) = 0

(7.3)

Definition 7.2 (Asymptotic notation). Let a . b mean a ≤ constant + b(1 + constant′λmaxi Si).

Theorem 7.3. Consider a span program P with at most one constraint, |C| ≤ 1. Assume that 0 ≤ λ ≤ ε/Si
for an arbitrarily small positive constant ε and for all i ∈ I. Assume also that (maxi∈I σi)/(mini∈I σi) =
O(1). Recall from Eq. (7.3) the definitions of c(x) and o(x) that depend on whether fP (x) is true or false.
Recall also that djj′ = ojcj′ − oj′cj.

• If the output fP (x) is true, then

σO .

[
〈o(x)|

(
1− |c(x)〉〈c(x)|
〈c(x)|c(x)〉

)
|o(x)〉

]−1

(7.4)

=

{ P
true j |cj |

2/σ̃jP
true j, j′ |djj′ |2/(σ̃j σ̃j′)

if djj′ 6= 0 for some true j, j′

‖|o(x)〉‖−2 = (
∑

true j |oj |2/σ̃j)−1 if cj = 0 for all true j

• If fP (x) is false with all grouped inputs j false, then

σO . 〈o(x)|
(

1− |c(x)〉〈c(x)|
〈c(x)|c(x)〉

)
|o(x)〉 . (7.5)

The expression on the right-hand side is
(∑

false j, j′ |djj′ |2σ̃j σ̃j′
)
/
(∑

false j |cj |2σ̃j
)

provided |c〉 6= 0.

• If the output is false, and there is at least one true input j′, then

σO .
1
|cj′ |2

∑
false j

|djj′ |2σ̃j . (7.6)

Proof. Now, at λ = 0, with γj defined as in Lemma 6.1, 1/γj . σ̃j . For λ > 0, with S̃j defined as in
Lemma 5.4, S̃j . σ̃j .

The claimed Eqs. (7.4), (7.5), (7.6) are the same as the equations in Lemma 6.2 and Theorem 5.6, except
with σ̃j in place of 1/γj or S̃j , respectively. We need to argue that each term 1/γj or S̃j can be replaced
with σ̃j .

Write S̃j ≤ αj + σ̃j(1 + βjλmaxi Si) for constants αj and βj . Then S̃j ≤ σ̃j(1 + maxj′
αj′

σ̃j′
)(1 +

maxj′ βj′λmaxi Si). The factors (1 + maxj′
αj′

σ̃j′
)(1 + maxj′ βj′λmaxi Si) can then be pulled out of all the

expressions. Because we have assumed that σi/σi′ = O(1) for all i, i′, also σ̃j/σ̃j′ = O(1) for all j, j′, and
the multiplicative factor of (1 + maxj′

αj′

σ̃j′
) becomes an additive constant.

The key point here is that adding a constant to an input only adds a constant to the output—it does
not become a multiplicative constant. This can also be argued with a more detailed analysis without the
assumption σi/σi′ = O(1), but this assumption suffices for our applications in this paper.

18

Definition 7.4 (Span program complexity). Let P be a span program. For an input x, define the span
program complexity of P on input x, spc(P, x), to be the minimum value b such that σO . bmaxi Si,
assuming that 0 ≤ λmaxi Si is at most an arbitrarily small constant. Let the span program complexity of P
be spc(P) = maxx spc(P)x.

8 NOT gate

The above analysis of span programs does not apply to the NOT gate, because the ability to complement
inputs was assumed in Definition 4.1. Implementing the NOT gate x 7→ x with a span program on the literal
x would be circular. Therefore we give a separate analysis.

Definition 8.1 (NOT gate). The NOT gate is implemented as two weight-one edges in a row. Call the
three vertices bi, ai = bO and aO. The edge (ai, bi) is the input edge, while (aO, bO) is the output edge. The
middle vertex ai = bO is shared.

Analysis at λ = 0: If the input is true, then γi measures the squared support on ai of a normalized λ = 0
eigenvector. Then γO = γi, because ai = bO the output vertex.

If the input is false, so bi =
√
γi, then bi + aO = 0. Therefore, we simply need to renormalize:

γO = γi/(1 + γi), or equivalently
1
γO

=
1
γi

+ 1 .

Analysis for small λ > 0: We are given ri = ai/bi. The eigenvector equation is bi + aO = λai = λbO.
Therefore, rO = aO/bO = λ− 1/ri.

• If the input is false, so si = ri/λ, then sO = −1/(λrO) = si/(1 − λ2si). Therefore, si ≤ sO ≤
si(1 + 2λ2si) provided λ2si ≤ 1/2.

• If the input is true, so si = −1/(λri), then sO = rO/λ = si + 1 .

Remark 8.2. Note that complementing a variable i barely changes si or γi. This may be useful if a span
program takes inputs i and i′ associated with a literal and its complement. Note also that we may assume
without loss of generality that there are never two NOT gates in a row in the formula ϕ.

9 Span programs for the gates in S
In this section, we will plug specific span programs into Theorem 7.3, in order to prove:

Theorem 9.1. Let S be the gate set of Definition 2.1. For f ∈ S, let A(f) be the nonnegative-weight
adversary bound for f (Definition 2.3).

Then for any gate f ∈ S, there exists a span program P computing fP = f , such that the span program
complexity of P (Definition 7.4) is

spc(P) = A(f) . (9.1)

Remark 9.2. The proof of Theorem 3.1 will imply that spc(P) ≥ A(fP) (by the adversary query lower
bound Theorem 2.5), so these span programs are optimal.

Proof of Theorem 9.1. We begin by analyzing the k-bit EQUAL gate (Claim 9.5), the MAJ3 gate (Claim 9.7),
and a certain three-bit function, g(x) = (x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x2) (Claim 9.8). For each gate f , we present
a span program P , with |C| ≤ 1, that computes fP = f . We then substitute into Theorem 7.3 to determine
spc(P).

In the analyses of these gates, we will assume that the input SI and γ−1
I are all equal. If not, then replace

each Si with maxi Si, and replace each γi with mini γi. Since the expressions in Theorem 7.3 then scale
linearly with Si and 1/γi, we may set Si = 1/γi = 1 to compute the leading constant factor spc(P, x).

19

For all the remaining gates in S, it suffices to analyze OR and PARITY gates on unbalanced inputs
(Lemmas 9.10 and 9.11). That is, we allow σ1 and σ2 to be different, with σ1/σ2, σ2/σ1 = O(1). For functions
b and b′ on disjoint inputs, A(b ⊕ b′) = A(b) + A(b′), and A(b ∨ b′) =

√
A(b)2 +A(b′)2 [BS04, HLŠ05]; we

obtain matching upper bounds for span program complexity.

Remark 9.3. Our procedure for analyzing a function f has been as follows:

1. First, determine a span program P computing fP = f . The simplest span programs are the minimum-
size {AND, OR, NOT} formula expansions of f .

2. Next, compute for each input x the complexity spc(P, x) as a function of the variable weights of P .

3. Finally, optimize the nonzero weights of P in order to minimize spc(P) = maxx spc(P, x). For example,
note that scaling ‖|o〉‖ up helps the true cases in Theorem 7.3, and hurts the false cases. We therefore
choose ‖|o〉‖ to balance off the worst true case against the worst false case.

If the function has symmetries, we respect those symmetries during optimization. On the other hand, if
two literals are not treated symmetrically by f , then we do not put those literals together in any grouped
input Xj. For an example, see the proof of Claim 9.8, and also see Remark 5.9.

For ease of exposition, in some of the cases below we will directly present the optimal P .

EQUAL gate

Expanding the k-bit EQUAL function as EQUAL(x1, . . . , xk) = (x1 ∧ . . . ∧ xk) ∨ (x1 ∧ . . . ∧ xk) leads to a
natural span program:

Definition 9.4. Let PEQUAL be the span program with t = (1) and

X1 = {x1, x2, . . . , xk} X2 = {x1, x2, . . . , xk}
v1 = (w) v2 = (w) ,

where w = (k − 1)1/4 (this value comes from optimizing the calculation below).

The adversary bound for the k-bit EQUAL gate is k/
√
k − 1.5 We obtain a matching upper bound.

Claim 9.5. The complexity of the k-bit EQUAL gate is spc(PEQUAL) = k/
√
k − 1.

Proof. We substitute into Theorem 7.3. Since there are no constraints, |c〉 = 0. Cases are distinguished
according to the Hamming weight of the input x. Since an input x is equivalent to its bitwise complement,
Hamming weight h is equivalent to weight k − h.

Case x ∈ {0k, 1k}: The first grouped input, x1∧. . .∧xk, is false, while the second grouped input, x1∧. . .∧xk,
is true. EQUAL(x) is true. In Theorem 7.3, |o(x)〉 = (0, w/

√
k), so by Eq. (7.4),

spc(PEQUAL, x) = ‖|o(x)〉‖−2 = k/w2 .

Case |x| = h /∈ {0, k}: EQUAL(x) and both inputs are false. |o(x)〉 = (w/
√
k − h,w/

√
h), so by Eq. (7.5),

spc(PEQUAL, x) = ‖|o(x)〉‖2 = w2
(1
k − h

+
1
h

)
.

This complexity is highest for h ∈ {1, k − 1}, for which it is w2k/(k − 1).

Set the weight w = (k − 1)1/4 to balance the two worst cases, both at k/
√
k − 1.

5The optimal adversary matrix Γ comes from the 2× 2k matrix
`

1 1 ··· a a ···
a a ··· 1 1 ···

´
, where the rows correspond to inputs 0k and

1k, and the columns correspond to inputs of Hamming weight 1 then k − 1, and a = 1/(k − 1).

20

Majority gate MAJ3

Definition 9.6. Let PMAJ3 be the span program with |o〉 = 1√
3
(1, 1, 1), |c〉 = (1, ω, ω2) with ω = e2πi/3, and

Xj = {xj} for j = 1, 2, 3.

As discussed in Example 4.2, PMAJ3 computes the majority function, fPMAJ3
= MAJ3. From Table 1,

the adversary bound is A(MAJ3) = 2.6

Claim 9.7. The complexity spc(PMAJ3) = 2 = A(MAJ3).

Proof. We substitute into Theorem 7.3. There are four inequivalent cases for the input x = x1x2x3. For
j 6= j′, |djj′ |2 = 1.

Case x = 000: MAJ3(x) = 0. |o(x)〉 = |o〉, |c(x)〉 = |c〉. Since |o〉 and |c〉 are orthogonal, by Eq. (7.5),

spc(PMAJ3 , x) = ‖|o(x)〉‖2 = 1 .

Case x = 100: MAJ3(x) = 0, but there is a true input. Therefore, by Eq. (7.6),

spc(PMAJ3 , x) =
1
|c1|2

∑
j=2,3

|dj1|2 = 2 .

Case x = 110: MAJ3(x) = 1. |o(x)〉 = (1√
3
, 1√

3
, 0) and |c(x)〉 = (1, ω, 0). By Eq. (7.4),

spc(PMAJ3 , x) =
[
‖|o(x)〉‖2 − |〈o(x)|c(x)〉|2

‖|c(x)〉‖2

]−1

=

∑
j=1,2|cj |2

|d12|2
= 2 .

Case x = 111: MAJ3(x) = 1. |o(x)〉 = |o〉, |c(x)〉 = |c〉. Since |o〉 and |c〉 are orthogonal, by Eq. (7.4),

spc(PMAJ3 , x) = ‖|o(x)〉‖−2 = 1 .

Three-bit gate g(x) = (x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x2)

Now consider g(x) = (x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x2). From Table 1, the adversary bound is A(g) =
√

3 +
√

3.7

Claim 9.8. Consider the span program P with t = (1, 0) and

X1 = {x1, x2} X2 = {x1, x2} X3 = {x3}
v1 = (o1c1) v2 = (o20) v3 =

(
0
c3

) ,

Then fP (x) = (x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x2) if o1, o2, c1, c3 6= 0. Additionally,

min
o1,o2,c1,c3>0

spc(P) =
√

3 +
√

3 = A(fP) .

Proof. We substitute into Theorem 7.3. There are six inequivalent cases for the input x = x1x2x3:
010, 011, 110 all evaluating to false, and 000, 001, 111 all evaluating to true. Note in the calculations be-
low that d12 = −o2c1, d13 = o1c3, d23 = o2c3, and since |X3| = 1, σ̃3 = 1 always.

6The optimal adversary matrix Γ comes from the matrix
“

0 1 1
1 0 1
1 1 0

”
, where the rows correspond to inputs 100, 010, 001, and

the columns correspond to inputs 011, 101, 110.

7The optimal adversary matrix Γ comes from the matrix

1 a
√

3

1 a
√

3

b 0
√

3

!
, where a =

“
1
2

(5−
p

13− 6
√

3)
”1/2

, b = 1
2

“
−1−

√
3 +q

2(8 +
√

3)
”

, and the rows correspond to inputs 011, 101, 110, the columns to inputs 000, 001, 111.

21

Case x = 010: All three grouped inputs, j = 1 (x1∧x2), j = 2 (x1∧x2) and j = 3 (x3) evaluate to be false.
We have σ̃1 = σ̃2 = σ̃3 = 1, so |o(x)〉 = |o〉 and |c(x)〉 = |c〉, and, by Eq. (7.5),

spc(P, x) = 〈o(x)|
(

1− |c(x)〉〈c(x)|
〈c(x)|c(x)〉

)
|o(x)〉 =

d2
12 + d2

13 + d2
23

c21 + c23
.

Case x = 011: Only input j = 3 is true, with σ̃1 = σ̃2 = 1, so spc(P, x) = 1
c32 (d13

2 + d23
2) (Eq. (7.6)).

Case x = 110: Only j = 1 is true, so σ̃2 = 1/2 and spc(P, x) = 1
c12 (d12

2/2 + d13
2) (Eq. (7.6)).

Case x = 001: Inputs j = 2 and 3 are true, with σ̃2 = 2, so spc(P, x) = c23
d232/2

= 2/o2
2 (Eq. (7.4)).

Case x = 111: Inputs j = 1 and 3 are true, with σ̃1 = 2, so spc(P, x) = c21/2+c23
d213/2

(Eq. (7.4)).

Case x = 000: Only j = 2 is true, so |o(x)〉 = (0, o2/
√

2, 0), |c(x)〉 = 0, and spc(P, x) = 2/o2
2 (Eq. (7.4)).

Now spc(P) = maxx spc(P, x) = max{d
2
12+d213+d223
c21+c23

, d13
2+d23

2

c23
, d12

2/2+d13
2

c12 , 2
o22
,
c21/2+c23
d213/2

, 2
o22
} is minimized by

setting o2
1 = (1 + 1/

√
3)1/2, o2

2 = (2− 2/
√

3)1/2, c21 =
√

3− 1, c3 = 1, so spc(P) =
√

3 +
√

3.

Remark 9.9. The form of P in Claim 9.8 comes from the formula for g(x). The second row of the vJ gives
the AND (x1 ∧ x2) ∧ x3, split into two groups because weights on the x3 input should not be symmetrical
weights on x1 or x2 inputs. The first row computes the OR with x1 ∧ x2.

PARITY gate, OR gate

Lemma 9.10. Consider f(x, x′) = f ′(b(x), b′(x′)), with f ′ ∈ {PARITY,OR}, and b and b′ functions on
O(1) bits.

Assume that there exist span programs Pb and Pb′ for b and b′ with respective complexities B = spc(Pb) and
B′ = spc(Pb′). Then there exists a span program P for f with complexity spc(P) = B+B′ if f ′ = PARITY,
or
√
B2 +B′2 if f ′ = OR.

Proof. PARITY: For f ′ the PARITY gate, define a span program PPARITY with t = (1) and

X1 = {x1, x2} X2 = {x1, x2}
v1 = (1) v2 = (1) .

(This is the same span program as for the 2-bit EQUAL gate. In the notation of Theorem 7.3, |c〉 = 0
and |o〉 = (1, 1).)

To define the span program P , feed as inputs to PPARITY the outputs of Pb and Pb′ . (Since PPARITY

works with x1 and x1 it needs two copies of Pb, one of which has been negated with a NOT gate.
Similarly, it uses two copies of Pb′ .) Therefore, unlike for the previous gates, the input bounds entering
PPARITY differ: for the input x1 or x1 we have

σ1 . Bmax
i
Si ,

while for input x2 or x2 we have
σ2 . B

′max
i
Si .

Here, the SI are the ratio bounds for the inputs entering the span programs Pb and Pb′ , and not the
bounds entering PPARITY. For computing the span program complexity, we may set all Si to one.

Up to symmetry, there are only two cases to analyze: x = 01 or x = 00.

22

Case x = 01: The first grouped input is false, while the second grouped input is true. Let σ̃2 = B+B′

(see Eq. (7.2)). Then |o(x)〉 = (0, 1/
√
σ̃2), and by Eq. (7.4),

spc(P, x) =
1

‖|o(x)〉‖2
= B +B′ .

A symmetrical argument holds for case x = 10.

Case x = 00: Neither grouped input is true, so |o(x)〉 = (
√
σ̃1,
√
σ̃2), where σ̃1 = B′ and σ̃2 = B (see

Eq. (7.2)). Then by Eq. (7.5),

spc(P, x) = ‖|o(x)〉‖2 = B′ +B .

A symmetrical argument holds for case x = 11.

Therefore, spc(P) = B +B′, as claimed.

OR gate: For f ′ the OR gate, define a span program POR with t = (1) and

X1 = {x1} X2 = {x2}
v1 = (

√
B/(B2 +B′2)1/4) v2 = (

√
B′/(B2 +B′2)1/4)

.

(In the notation of Theorem 7.3, |c〉 = 0, o1 =
√
B/(B2 + B′2)1/4, and o2 =

√
B′/(B2 + B′2)1/4.) As

for PARITY, feed as inputs to POR the outputs of Pb and Pb′ to define P (one copy of each). Again,
we may take σ1 . B and σ2 . B′. Since both grouped inputs are on a single literal, σ̃1 = B and
σ̃2 = B′ always (see Eq. (7.2)).

Case x = 00: Neither input is true. |o(x)〉 = (
√
σ̃1o1,

√
σ̃2o2), and by Eq. (7.5),

spc(P, x) = ‖|o(x)〉‖2 =
√
B2 +B′2 .

Case x = 01: OR(01) is true, so |o(x)〉 = (0, o2/
√
σ̃2), and by Eq. (7.4),

spc(P, x) =
1

‖|o(x)〉‖2
=
√
B2 +B′2 .

A symmetrical argument holds for case x = 10.

Case x = 11: OR(11) is true, so |o(x)〉 = (o1/
√
σ̃1, o2/

√
σ̃2), and by Eq. (7.4),

spc(P, x) =
1

‖|o(x)〉‖2
= 1

2

√
B2 +B′2 .

Therefore, spc(P) =
√
B2 +B′2, as claimed.

Arbitrary three-bit gates, and all gates in S

Lemma 9.11. For any gate f ∈ S ′ = {arbitrary two- or three- bit gates, O(1)-fan-in EQUAL gates} (Defi-
nition 2.1), there exists a span program P computing fP = f , such that

spc(P) = A(f) . (9.2)

Proof. So far, we have verified this claim for the EQUAL gate, and for six of the fourteen inequivalent binary
functions on at most three bits, listed in Table 1: 0 and x1 (both trivial), x1 ∧ x2 = ¬(x1 ∨ x2), x1 ⊕ x2,
MAJ3(x1, x2, x3), EQUAL(x1, x2, x3), and g(x) = (x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x2).

By applying Lemma 9.10, we can finish off all the other gates as well. For example, the function
MAJ3(x1, x2, x3) ∨ (x1 ∧ x2 ∧ x3) has adversary bound

√
7 =

√
A(MAJ3)2 +A(AND3)2.

23

In fact, this completes the proof of Theorem 9.1, by applying Lemma 9.10 repeatedly to handle O(1)-size
{AND, OR, NOT, PARITY} formulas on inputs possibly themselves gates from S ′.

Example 9.12. For example, Lemma 9.10 implies that any {AND, OR, NOT} formula of bounded size has
a span program with complexity the square root of the sum of the squares of the input complexities. We
conjecture that this holds even for formulas with size ω(1); see [Amb06b, ACR+07] for special cases.

Remark 9.13. In the proof of Theorem 9.1, we used separate analyses for EQUAL, MAJ3 and g because
the upper bounds from Lemma 9.10 for these functions do not match the adversary lower bounds. E.g., from
Table 1 the smallest {AND, OR, NOT} formula for MAJ3 has five inputs. Lemma 9.10 therefore gives a
span program P for MAJ3 with complexity spc(P) =

√
5. This does not match A(MAJ3) = 2, though.

For EQUAL and for g, the span programs of Definition 9.4 and Claim 9.8 are based on optimal-size
{AND, OR, NOT} formulas. E.g., g(x1, x2, x3) = (x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x2). The span program complexity
is less than the naive

√
5 for g (or

√
2k for k-bit EQUAL) essentially because the worst-case inputs to the

formula (x1 ∧ x2 ∧ x3) ∨ (x4 ∧ x5) do not arise when the fourth input x4 is promised to be x1, and x5 is
promised to be x2. This allowed further optimization of the span program weights.

For the MAJ3 gate, optimizing the span program associated to the minimum-size formula over inputs of
the promised form also beats

√
5; it gives a span program with complexity

√
3 +
√

2. However, this is still
worse than the span program PMAJ3 of Definition 9.6.

10 Span program spectral analysis of the formula ϕ

Theorem 10.1. Consider an adversary-balanced formula ϕ on the gateset S. Let P be the span program
computing fP = ϕ, obtained by composing the span programs for the individual gates following the rules of
Theorem 9.1 and Definition 8.1. For an input x ∈ {0, 1}N , recall the definition of the weighted graph GP (x)
from Lemma 4.6; if xi = 1, delete from GP the edge to the ith input.

Let G̃P (x) be the same as GP (x) except with the weight on the output edge (aO, bO) set to w = εw/
√
A(ϕ)

(instead of weight one), where εw > 0 is a constant that will be determined in the proof. Then,

• If ϕ(x) = 1, there exists a normalized eigenvalue-zero eigenstate of the adjacency matrix AG̃P (x) with
Ω(1) support on the output vertex aO.

• If ϕ(x) = 0, then for some small enough constant ε > 0, AG̃P (x) does not have any eigenvalue-λ
eigenstates supported on aO or bO for |λ| ≤ ε/A(ϕ).

Proof. The proof of Theorem 10.1 has two parts. First, we will prove by induction that σg = O(A(ϕg)).
Then, by considering the last eigenvector constraint, λaO = wbO, we either construct the desired eigenvector
or derive a contradiction, depending on whether ϕ(x) is true or false.
Base case: Consider an input xi to the formula ϕ. If xi = 1, then the corresponding input edge (aj , bi) is
not in GP (x). In particular, the input i does not contribute to the expressions for S̃j in Lemma 5.4, and
for γj in Lemma 6.1, so Si and γi may be left undefined. If xi = 0, then the input edge (aj , bi) is in GP (x).
The eigenvalue-λ equation at bi is λbi = aj . For λ = 0, this is just aj = 0, so let γi = 1. For λ > 0, this is
ri = λsi = aj/bi = λ, so si = Si = 1.
Induction: Assume that |λ| ≤ ε/A(ϕ), for some small enough constant ε > 0.

Consider a gate g. Let h1, . . . , hk be the inputs to g. Let ϕg denote the subformula of ϕ based at g. By
Theorem 9.1, the output bound σg satisfies

σg . A(g) max
i
σhi , (10.1)

or equivalently
σg ≤ constant +A(g)(max

i
σhi)(1 + constant’ · |λ|A(ϕg)) (10.2)

24

for certain constants. Different kinds of gates give different constants in Eq. (10.2), but since the gate set is
finite, all constants are uniformly O(1).

Since |λ| ≤ ε/A(ϕ), the recurrence Eq. (10.2) has solution

σg ≤ O

(
max
χ

∏
h∈χ

A(h)
(

1 + ε′
A(ϕh)
A(ϕ)

))
,

where the maximum is over the choice of χ a non-self-intersecting path from g up to an input. Because ϕ
is by assumption adversary balanced (Definition 2.8),

∏
h∈χA(h) = A(ϕg) (Theorem 2.9). Also,

∏
h∈χ(1 +

ε′A(ϕh)
A(ϕ)) = O(1). Therefore, the solution satisfies

σg = O(A(ϕg)) . (10.3)

Remark 10.2. To explain Eq. (10.3), let us recall that the notation σg has meanings both for λ = 0 and
for λ 6= 0 (Definition 7.1). Let (ag, bg) be the output edge for g. Then Eq. (10.3) implies that there exists
a normalized vector, satisfying the eigenvector equations at bg and all higher vertices for λ = 0, that has
squared amplitude on either ag (if ϕg(x) = 1) or bg (if ϕg(x) = 0) at least γg ≥ 1/O(A(ϕg)). (By Lemma 4.6,
there does not exist any eigenvalue-zero eigenvector supported on bg if ϕg(x) = 1, or on ag if ϕg(x) = 0.)
Eq. (10.3) also implies that for nonzero λ, the ratio bound Sg of Definition 5.1 is O(ϕg).

Final amplification step: Assume ϕ(x) = 1. Then by Eq. (10.3), there exists a normalized eigenvalue-zero
eigenstate of the graph GP (x) with squared amplitude |aO|2 ≥ γO = 1/O(A(ϕ)). Recall that w = εw/

√
A(ϕ)

is the weight of the output edge (aO, bO) of P in G̃P (x), and let ãO = waO. The λ = 0 eigenvector
equations for G̃P (x) are the same as those for GP (x), except with ãO in place of aO. Therefore, we may take
|ãO|2 = 1/Ω(A(ϕ)), so for a normalized eigenvalue-zero eigenstate of G̃P (x), |aO|2 = Ω(1). By reducing the
weight of the output edge from 1 to w, we have amplified the support on aO up to a constant.

Now assume that ϕ(x) = 0. By Lemma 4.6, there does not exist any eigenvalue-(λ = 0) eigenvector
supported on aO. Also bO = 0 at λ = 0 by the constraint λaO = wbO. For λ 6= 0, |λ| ≤ ε/A(ϕ), Eq. (10.3)
implies that in any eigenvalue-λ eigenstate for G̃P (x), either ãO = bO = 0 or the ratio |ãO/bO| ≤ |λ|·O(A(ϕ)),
so

|aO/bO| ≤ constant · |λ|
w
A(ϕ) (10.4)

for some constant that does not depend on w. We have not yet used the eigenvector equation at aO. This
gives λaO = wbO, so

aO/bO = w/λ . (10.5)

Combining Eqs. (10.4) and (10.5), we get w2 ≤ constant · λ2A(ϕ) ≤ constant · ε2/A(ϕ). Substituting
w = εw/

√
A(ϕ), this is a contradiction provided we set εw so ε2w > constant · ε2. Therefore, the adjacency

matrix of G̃P (x) cannot have an eigenvalue-λ eigenstate supported on aO or bO.

11 Formula evaluation algorithm

In this section, we apply Theorem 10.1 and the Szegedy correspondence between discrete- and continuous-
time quantum walks [Sze04] to design the optimal quantum algorithm A needed to prove Theorem 3.1. The
approach is very similar to that used for the NAND formula evaluation algorithm of [CRŠZ07], with only a
minor technical difference. The main idea is to construct a quantum walk Ux = OxU0N whose spectrum and
eigenvectors correspond exactly to those of AG̃P (x). Starting at the output node aO, run phase estimation
on Ux to distinguish ϕ(x) = 0 from ϕ(x) = 1 by using Theorem 10.1. Essentially, since the phase-estimation
precision needed to avoid false positives is 1/O(A(ϕ)), the query complexity will be O(A(ϕ)).

This approach is slightly indirect. To motivate it, we begin by briefly considering in Section 11.1 a more
direct algorithm A′, that runs phase estimation directly on exp(iAG̃P (x)). A′ is analogous to the algorithm

25

described by Cleve et al. [CCJY07] soon after the original NAND formula evaluation paper [FGG07]. Algo-
rithm A′ is nearly optimal, but not quite. The operator exp(iAG̃P (x)) is a continuous-time quantum walk,
and the overhead can be thought of as coming from simulating continuous-time quantum dynamics with a
discrete computational model, in particular with discrete oracle queries. To avoid this overhead, we would
like to work with a discrete-time quantum walk, which we do to prove Theorem 3.1 in Section 11.2.

The approach in Section 11.1 is optional motivation, and the reader may choose to skip directly to
Section 11.2.

11.1 Intuition: Continuous-time quantum walk algorithm

Theorem 10.1 immediately suggests the basic form of a quantum algorithm for evaluating ϕ(x):

Algorithm A′: Input x ∈ {0, 1}N , Output true/false.

1. Prepare an initial state on the output node, |aO〉.

2. Run phase estimation, with precision δp ≥ ε/A(ϕ) and small enough constant error
rate δe, on the unitary V = exp(iAG̃P (x)/‖AG̃P (0N)‖).

3. Output true if and only if the phase estimation output is λ = 0.

The idea of the second step is to “measure the Hamiltonian AG̃P (x).” In this step, we have normalized AG̃P (x)

by ‖AG̃P (0N)‖ ≥ ‖AG̃P (x)‖ instead of by ‖AG̃P (x)‖, in order to minimize dependence on the input x. This
norm is O(1) since the graph G̃P (0N) has vertex degrees and edge weights all O(1).

The above procedure evaluates ϕ(x) correctly, with a constant gap between its completeness and sound-
ness:

• Theorem 10.1 implies that if the formula evaluates to true, then AG̃P (x) has an eigenvalue-zero eigen-
state with squared support |aO|2 = Ω(1) on aO. Therefore, the phase estimation outcome is λ = 0
with probability at least |aO|2 − δe = Ω(1) (the completeness parameter).

• On the other hand, if the formula evaluates to false, then Theorem 10.1 implies that AG̃P (x) has no
eigenvalue-λ eigenstates supported on aO with |λ| < δp. Therefore, the measured outcome will be
λ = 0 only if there is an error in the phase estimation. By choosing δe a small enough constant, the
soundness error δe will be bounded away from the completeness parameter.

Therefore, the above procedure is correct. Its efficiency also seems promising. Phase estimation of V
with precision δp and error rate δe requires O(1/(δpδe)) calls to V [CEMM98]. Therefore, the second step
requires only O(A(ϕ)) calls to V .

However, to complete the description of the algorithm A′, we need to explain how to implement V . This
is important because AG̃P (x) depends on the input x. Therefore, implementing V requires querying the x. If
each call to V requires many queries to the input oracle Ox (Definition 2.4), then A′’s overall query efficiency
will be poor.

Note now that only the input edges of GP (x) depend on the input x. Therefore, AG̃P (x) can be split up
into two terms: (input edges) + (all other edges). The first term can be exponentiated with only two queries
to the input oracle Ox, while exponentiating the second term requires no input queries. The two terms do
not commute, but the exponential of their sum can still be computed to sufficient precision by using a Lie
product decomposition (these are more quantitative versions of identities like eA+B = limn→∞(eA/neB/n)n).
For more details, see [CCJY07].

Unfortunately, implementing the exponential of AG̃P (x) will require ω(1) input queries. By using higher-
order Lie product formulas, the overhead can be reduced to exp(O(

√
log|x|)), which is No(1). However,

this is still a super-constant overhead, so it appears that this approach cannot yield an optimal formula
evaluation algorithm—the best we can hope for is O(A(ϕ)) ·No(1) queries.

26

11.2 Proof of Theorem 3.1: Discrete-time quantum walk algorithm

Therefore, we turn to the approach used in the NAND formula evaluation algorithm of [CRŠZ07]. Instead of
running phase estimation on the exponential of AG̃P (x), we construct a discrete-time, or “coined,” quantum
walk Ux = OxU0N that has spectrum and eigenvectors corresponding in a precise way to those of AG̃P (x).
Then we run phase estimation on Ux. Each call to Ux requires exactly one oracle query, so there is no query
overhead.

11.2.1 Construction of the coined quantum walk Ux

The first step in constructing Ux is to decompose ÃGP (0N) into (constant)·∆†◦∆, where ∆ is a square matrix
with row norms one, and ◦ denotes the entrywise matrix product. We follow [CRŠZ07]. One minor technical
difference, though, is that for us, AG̃P (x) is a Hermitian matrix with possibly complex entries. In [CRŠZ07],
the analogous weighted adjacency matrix, for the NAND formula ϕ, is a real symmetric matrix. Therefore,
we need to slightly modify the construction of P to obtain the correct phases for the entries of ÃGP (0N).

Definition 11.1. For notational convenience, let A = AG̃P (0N) be the weighted adjacency matrix for G̃P (0N).
(Recall from Theorem 10.1 that G̃P (0N) is the same as GP except with the edge weight on the output edge
(aO, bO) reduced.) A =

∑
v,w Av,w|v〉〈w| is a Hermitian matrix.

G̃P (0N) is a bipartite graph, so we may color each vertex red or black, such that every edge is between
one red vertex and one black vertex.

Claim 11.2. Let A′ =
∑
v,w|Av,w||v〉〈w| be the entrywise absolute value of A. A′ is a real symmetric

matrix. Let ‖A′‖ be the largest magnitude eigenvalue of A′. Let |δ〉 be the principle eigenvector of A′, with
〈v|δ〉 = δv > 0 for every v, and let

∆ =
1√
‖A′‖

∑
black v
red w

((√
Av,w

)∗√δw
δv
|v〉〈w|+

√
Av,w

√
δv
δw
|w〉〈v|

)
. (11.1)

Then ∆ has all row norms one, and A = ‖A′‖ ·∆† ◦∆.

Proof. Since A′ has nonnegative entries, the principal eigenvector |δ〉 is also nonnegative. Since G̃P (0N) is
a connected graph, δv > 0 for every v. Hence ∆ is well defined up to choice of sign of the square root, which
doesn’t matter.

By construction, for all v and w, ∆∗v,w∆w,v = Av,w/‖A′‖, i.e., ‖A′‖ · ∆† ◦ ∆ = A. Furthermore, the

squared norm of the v-th row of ∆ is
∑
w|Pv,w|2 = 1

δv

∑
w A
′
v,wδw = (A′δ)v

δv
= ‖A′‖.

Remark 11.3. In defining ∆, we have evenly divided the complex phases of entries of A between red-black
and black-red terms. However, any division of the phases would have worked. For example, Claim 11.2 would
also hold with Eq. (11.1) replaced by ∆ = 1√

‖A′‖

∑
black v
red w

(
A∗v,w√
|Av,w|

√
δw
δv
|v〉〈w|+

√
|Av,w| δvδw |w〉〈v|

)
.

We can now apply Szegedy’s correspondence theorem [Sze04] to relate the spectrum of ÃGP to that of a
discrete-time coined quantum walk unitary.

Theorem 11.4 ([Sze04]). Let {|v〉 : v ∈ V } be an orthonormal basis for HV . For each v ∈ V , let |ṽ〉 =
|v〉 ⊗

∑
w∈V δvw|w〉 ∈ HV ⊗HV , where 〈ṽ|ṽ〉 =

∑
w|δvw|2 = 1. Let T =

∑
v |ṽ〉〈v| and Π = TT † =

∑
v |ṽ〉〈ṽ|

be the projection onto the span of the |ṽ〉s. Let S =
∑
v,w |v, w〉〈w, v|, a swap.

Let U = (2Π − 1)S, a swap followed by reflection about the span of the |ṽ〉s. Let M = T †ST =∑
v,w δ

∗
vwδwv|v〉〈w|.

Then the spectral decomposition of U corresponds to that of M as follows: Take {|λα〉} a complete
set of orthonormal eigenvectors of the Hermitian matrix M with respective eigenvalues λα. Let Rα =
span{T |λα〉, ST |λα〉}. Then Ra ⊥ Rα′ for α 6= α′; let R = ⊕αRα. U fixes the spaces Ra and is −S on R⊥.

27

The eigenvalues and eigenvectors of U within Ra are given by βα,± = −λα±i
√

1− λ2
α and (1+βα,±S)T |λα〉,

respectively.

(A proof of Theorem 11.4 in the above form is given in [CRŠZ07].)

Remark 11.5 (Coined quantum walks). The operator U = (2Π−1)S in Theorem 11.4 is known as a “coined
quantum walk.” S is known as the “step operator,” and the reflection (2Π − 1) is the “coin-flip operator.”
On the space R, (2Π− 1) decomposes as

∑
v |v〉〈v| ⊗ (reflection about

∑
w δvw|w〉).

In a classical random walk on a graph, a coin is flipped between each step to decide which adjacent vertex
to step to next. In a coined quantum walk, on the other hand, the coin is maintained as part of the coherent
quantum state, and is reflected between steps (also known as “diffusion”).

Remark 11.6. Theorem 11.4 can be viewed as giving a correspondence between coined quantum walks and
classical random walks; in the special case that each δvw = δwv ≥ 0, M is a classical random walk transition
matrix. For general δvw, Theorem 11.4 can be viewed a correspondence between coined quantum walks and
continuous-time quantum walks. We use the theorem in the latter sense.

Lemma 11.7. For ∆ defined by Eq. (11.1) and with δvw = ∆v,w, let U0N be the coined quantum walk
operator U0N = iU = i(2Π − 1)S in the notation of Theorem 11.4. U0N acts on HV ⊗HV , where V is the
vertex set of GP . For x ∈ {0, 1}N , let Ux = (Ox ⊗ I)U0N , where Ox acts on HV by applying a phase (−1)xi
to input vertex bi and otherwise does nothing. Then,

• If ϕ(x) = 1, there exist eigenvalue 1 and eigenvalue −1 normalized eigenstates of Ux each with Ω(1)
support on |aO, bO〉.

• If ϕ(x) = 0, then Ux does not have any eigenstates supported on |aO, bO〉 with eigenvalues ±eiλ for
|λ| ≤ constant/A(ϕ).

Proof. Note that for an input vertex bi on a span program input edge (ai, bi), the bith row of ∆ is 〈bi|∆ = 〈ai|.
Define ∆(x) as follows: If xi = 1, then let 〈bi|∆(x) = 〈bi|, and let the other rows of ∆(x) be the same as
those of ∆ = ∆(0N).

In the notation of Theorem 11.4 with each δvw set to the (v, w) entry of ∆(x), the vectors |ṽ〉 do not
depend on x if v /∈ {bi}i∈I , whereas

|b̃i〉 =
{
|bi, ai〉 if xi = 0
|bi, bi〉 if xi = 1

Therefore, in M = ∆(x)† ◦∆(x), entries (ai, bi) and (bi, ai) are zeroed out when xi = 1, while other entries
are unchanged: so M = 1

‖A′‖AG̃P (x). Also, on R, U = (2Π−1)S is the same as Ux. So Theorem 11.4 implies
that the spectrum of Ux = (Ox ⊗ I)U0N corresponds exactly to that of AG̃P (x)/‖A′‖. If the eigenvalues
of AG̃P (x)/‖A′‖ are {λα}, then the eigenvalues of Ux are given by ±

√
1− λ2

α + iλα, i.e., ei arcsinλα and
−e−i arcsinλα .

In case ϕ(x) = 1, Theorem 10.1 promises that AG̃P (x) has an eigenvalue-zero eigenstate with Ω(1) support
on aO. Denote this eigenstate by |λα = 0〉. By Theorem 11.4, (1± iS)T |λα = 0〉 are eigenstates of Ux with
eigenvalues ±1. Since T |aO〉 = |aO, bO〉, the eigenvectors (1 ± iS)T |λα = 0〉 each have Ω(1) support on
|aO, bO〉. Moreover, this remains true even after renormalizing: T is an isometry, while the swap S is
unitary, so ‖(1± iS)T |λα = 0〉‖ ≤ 2.

The claim also follows for the case ϕ(x) = 0 by Theorems 10.1 and 11.4. Every eigenstate of U with
support on |aO, bO〉 = T |aO〉 must be of the form (1 + βα,±S)T |λα〉 = (1 + (−λα ± i

√
1− λ2

α)S)T |λα〉.
The terms which can overlap T |aO〉 are either 〈aO|λα〉 (via T) or 〈bO|λα〉 (via ST). But by Theorem 10.1,
both coefficients must be zero. Note that ‖A′‖ = O(1) since the graph G̃P (0N) has vertex degrees and edge
weights all O(1). Therefore, the spectral gap from zero of AG̃P (x)/‖A′‖ is only a constant factor worse than
that of AG̃P (x).

28

11.3 Algorithm A, correctness, and query and time complexity

Algorithm A: Input x ∈ {0, 1}N , Output true/false.

1. Prepare an initial state on the output edge |aO, bO〉.

2. Run phase estimation on Ux, with precision δp ≥ constant/A(ϕ) and small enough
constant error rate δe.

3. Output true if the measured phase is 0 or π. Otherwise output false.

Correctness: Lemma 11.7 implies that A is both complete and sound:

• If ϕ(x) = 1, then U(x) has eigenvalue-(±1) eigenstates each with Ω(1) squared support on |aO, bO〉.
The completeness parameter is at least this squared support minus the phase estimation error rate δe.
For small enough constant δe, the completeness is Ω(1).

• If ϕ(x) = 0, then since the precision parameter δp is smaller than the promised gap away from ±1
in Lemma 11.7, phase estimation will output 0 or π only if there is an error. By choosing the error
rate δe a small enough constant, the soundness error δe will be bounded away from the completeness
parameter.

Therefore, algorithm A is correct. The constant gap between its completeness and soundness parameters
can be amplified as usual.
Query and time complexity: Phase estimation of Ux with precision δp and error rate δe requires
O(1/(δpδe)) calls to Ux = (Ox ⊗ I)U0N [CEMM98]. Therefore, A makes O(A(ϕ)) queries to the input
oracle Ox.

The time-efficiency claim of Theorem 3.1 is slightly more complicated. Here, we need to allow a pre-
processing phase in which the algorithm can compute AG̃P (0N) and in particular (approximations to) the
coin diffusion operators in U0N . This preprocessing depending on ϕ, but not x, takes poly(N) time. The
algorithm then needs coherent access to the precomputed information in order to apply efficiently the coin
diffusion operators. For further details, see [CRŠZ07].

This completes the proof of Theorem 3.1. �

12 Extensions

We briefly discuss some directions in which our result, Theorem 3.1, can be extended.

12.1 Four-bit gates

Up to symmetries, there are 208 inequivalent binary functions that depend on exactly four input bits
x1, . . . , x4. We have considered so far only a minority of these functions. Results for all the functions
we have considered are listed at the webpage [RŠ07]. To summarize,

• Thirty functions can be written as a PARITY or OR of two subformulas on disjoint inputs. These
functions are included in the gate set S, with an analysis by Lemma 9.10.

• For 13 additional functions, we have found a span program matching the adversary lower bound.
The arguments for these functions are similar to the analyses in Section 9, although most use span
programs with |C| > 1 constraints. These functions could be added to the gate set S without breaking
Theorem 3.1.

• For 20 of the remaining functions, we have found a span program with complexity beating the square-
root of the minimum {AND, OR, NOT} formula size, but not matching the adversary lower bound.

29

See the open problems in Section 13 for further discussion. It seems that inevitably k-bit gates are going
to require more involved techniques to evaluate optimally, for k large enough. It may well be that four-bit
gates are already interesting in this sense.

12.2 Eliminating the preprocessing

In many cases for ϕ—perhaps even all cases?—the preprocessing step of algorithm A can be eliminated.
Because ϕ is an adversary-balanced formula on a known gateset, a decomposition through Theorem 11.4
can be computed separately for each gate of S and then put together at runtime. This decomposition is not
the decomposition of Claim 11.2, which involved global properties of ϕ like ‖A′‖. For an example, see the
exactly balanced NAND tree algorithm in [CRŠZ07].

The decompositions can be combined because all the weights of gate input/output edges are one. This
is quite different from the case of unbalanced NAND trees considered by [CRŠZ07], in which the weight of
an input edge depends on the subformula entering it.

12.3 Arbitrary {AND, OR, NOT, PARITY} formulas

Some of the conditions on the gates in S (Definition 2.1) can be loosened. For example, S includes as single
gates O(1)-size {AND, OR, NOT, PARITY} formulas on inputs that are themselves possibly elements of
S ′. Let f be such a gate, f = g ◦ (h1, . . . , hk) with g an {AND, OR, NOT, PARITY} formula of size O(1),
and each hi either the identity or a gate from S ′. We have assumed that all the inputs to f have equal
adversary bounds. However, the proof we have given works equally well only provided that the adversary
bounds entering each hi are equal. Also, the adversary bounds entering hi and entering hi′ should differ by
at most a constant factor (although as remarked in Theorem 7.3, this assumption can be eliminated).

We believe that the assumption that g be of size O(1) can also be significantly weakened. A stronger
analysis like that of [CRŠZ07] for “approximately balanced” {AND, OR, NOT} formulas can presumably
also be applied with PARITY gates. We have avoided this analysis to simplify the proofs, and to focus on
the main novelty of this paper, the extended gate sets.

For {AND, OR, NOT, PARITY} formulas that are not “approximately balanced,” rebalancing will
typically be required. We have not investigated how the formula rebalancing procedure of Bshouty, Cleve
and Eberly [BCE91, BB94] affects the formula’s adversary bound. In [CRŠZ07], it sufficed to consider the
effect on the formula size, because the adversary bound for any {AND, OR, NOT} formula on N inputs is
always

√
N .

13 Open problems

We have begun the development of a new framework for quantum algorithms based on span programs. There
are many open problems in this area. All of the open problems from [CRŠZ07] remain unresolved. We would
like to raise several other questions.

1. The technical analysis can be improved. Theorem 5.6 and Lemma 6.2 hold in the case that there is at
most one constraint, |C| ≤ 1. Lemma 6.2 does generalize to |C| > 1, but we only have Eq. (5.3) in the
λ 6= 0 analysis. Analysis for |C| > 1 can still be run on a case-by-case basis, but general statements
would be preferable. See the conjectures in Remark 5.9.

2. It is natural to try to extend the algorithm to work optimally for a larger gate set. Needless to say,
there are many candidates. Optimal span programs for most four-bit functions are open—see the list
of functions tabulated at [RŠ07]. One function of particular interest, and not on that list, is the six-
bit Kushilevitz function [HLŠ07, Amb06a]. An interesting class of functions are the Hamming-weight
threshold functions Thresholdh,k : {0, 1}k → {0, 1} defined by

Thresholdh,k(x) =
{

1 if |x| ≥ h
0 if |x| < h

30

There are obvious span programs for threshold functions, but of them we only have optimal span
programs for the special cases of OR, AND and MAJ3.

3. We have focused on the adversary bound with nonnegative weights A(f). In fact, Eq. (2.2) still provides
a lower bound on the quantum query complexity even when one removes the restriction that the entries
of Γ be nonnegative [HLŠ07]. This more general adversary bound, A±(f) is clearly at least A(f). For
every three-bit function f , no advantage is gained by allowing negative weights: A±(f) = A(f). For
most four-bit functions f , though, A(f) < A±(f), so this improvement is likely generic. However, for
no function f such that A(f) < A±(f) do we have an upper bound that matches A±(f). (There are
many fewer functions with A(f) = A±(f) for which we do not have an upper bound.) Might the A±

bound be loose for many of the functions for which A±(f) > A(f)? Theorem 2.9 is not known to
hold for A±; under the conditions of the theorem, only A±(f) ≥ A±(g)A±(h1) is known. Could the
inequality be sometimes strict?

Remark 13.1. It seems there might be a connection between the nonnegative-weight adversary lower
bound and the span program upper bound: in the cases we have checked, the span program’s “hard”
inputs, i.e., those x for which spc(P, x) = spc(P), are also the “hard” inputs for the adversary bound,
i.e., those x for which Γ has nonzero entries in a row or column.

4. Can the restriction that the gates have adversary-balanced inputs be significantly weakened? So far,
we have only analyzed the PARITY and OR gates for unbalanced inputs, in Lemma 9.10. (In the
lemma, we assumed that the highest input adversary bound was at most a constant factor times the
lowest input adversary bound, but this assumption can be removed; see Theorem 7.3.) For the MAJ3

gate, we have an optimal span program for the case in which only two of the inputs are balanced:

Lemma 13.2. Consider f(x, x′, x′′) = MAJ3(b(x), b′(x′), b′′(x′′)) with b, b′, b′′ functions on O(1) bits
computed by span programs Pb, Pb′ , Pb′′ with complexities B = spc(Pb) = spc(Pb′) and B′′ = spc(Pb′′).
Let β = B′′/B. Then there exists a span program P for f with complexity spc(P) = 1

2

(√
8 + β2+β

)
B =

A(f). P has target vector t = (1, 0) and8

X1 = {x1} X2 = {x2} X3 = {x3}
v1 =

(
w, i
)

v2 =
(
w,−i

)
v3 =

(
(1

2 + βw2)1/2, 2w
)

where w = 1
2
√

2
(
√

8 + β2 − β)1/2.

For example, the gates MAJ3(x1, x2, x3∧x4) and MAJ3(x1, x2, x3⊕x4) are among the four-bit functions
of Section 12.1 for which we have an optimal span program. However, we do not have an understanding
of MAJ3 when all three input complexities differ. In this case, the formula for the adversary lower
bound is substantially more complicated, and we do not have a matching span program.

For other gates, with the exception of PARITY and OR, we know similarly little. For a highly
unbalanced formula with large depth, there is the further problem of whether the formula can be
rebalanced without increasing its adversary lower bound too much.

5. Having run the algorithm to evaluate the formula, one is left with an eigenvalue-zero eigenstate. In
Grover’s search algorithm, which evaluates the fan-in N OR gate, the eigenstate gives the index of a
1 bit, a “witness,” if OR(x) is true. For more general formulas, is the eigenvalue-zero eigenstate also
useful, perhaps for extracting witness information?

6. In this paper, we have only plugged together bounded-size span programs evaluating O(1)-size func-
tions. An intriguing question is, do there exist interesting quantum algorithms based directly on
asymptotically large span programs? Some candidate problems may be found in [BGW99, BGP96],
although note that we care about span programs over C that need not be monotone.

8In the balanced case spc(Pb) = spc(Pb′) = spc(Pb′′), this span program differs from the that of Claim 9.7, but the choice
of phases 0,±π/2 is more convenient to work with than 0,±2π/3.

31

14 Acknowledgements

We thank Troy Lee for pointing out span programs to us. B.R. would like to thank Sean Hallgren and
Shengyu Zhang for helpful conversations.

References

[ABO99] Eric Allender, Robert Beals, and Mitsunori Ogihara. The complexity of matrix rank and feasible
systems of linear equations. Computational Complexity, 8:99–126, 1999. Preliminary version in
Proc. 28th ACM STOC, 1996.

[ACR+07] Andris Ambainis, Andrew M. Childs, Ben W. Reichardt, Robert Špalek, and Shengyu Zhang.
Any AND-OR formula of size N can be evaluated in time N1/2+o(1) on a quantum computer.
In Proc. 48th IEEE FOCS, 2007.

[Amb06a] Andris Ambainis. Polynomial degree vs. quantum query complexity. J. Comput. Syst. Sci.,
72(2):220–238, 2006. Preliminary version in Proc. 44th IEEE FOCS, 2003.

[Amb06b] Andris Ambainis. Quantum search with variable times. arXiv:quant-ph/0609168, 2006.

[Amb07] Andris Ambainis. A nearly optimal discrete query quantum algorithm for evaluating NAND
formulas. arXiv:0704.3628 [quant-ph], 2007.

[BB94] Maria Luisa Bonet and Samuel R. Buss. Size-depth tradeoffs for Boolean formulae. Information
Processing Letters, 49(3):151–155, 1994.

[BCE91] Nader H. Bshouty, Richard Cleve, and Wayne Eberly. Size-depth tradeoffs for algebraic formulae.
In Proc. 32nd IEEE FOCS, pages 334–341, 1991.

[BGP96] Amos Beimel, Anna Gál, and Mike Paterson. Lower bounds for monotone span programs.
Computational Complexity, 6:29–45, 1996. Preliminary version in Proc. 36th IEEE FOCS, 1995.

[BGW99] László Babai, Anna Gál, and Avi Wigderson. Superpolynomial lower bounds for monotone span
programs. Combinatorica, 19(3):301–319, 1999. Preliminary version in Proc. 28th ACM STOC,
1996.

[BS04] Howard Barnum and Michael Saks. A lower bound on the quantum query complexity of read-
once functions. J. Comput. Syst. Sci., 69(2):244–258, 2004.

[BSS03] Howard Barnum, Michael Saks, and Mario Szegedy. Quantum decision trees and semidefinite
programming. In Proc. 18th IEEE Complexity, pages 179–193, 2003.

[CCJY07] Andrew M. Childs, Richard Cleve, Stephen P. Jordan, and David Yeung. Discrete-query quantum
algorithm for NAND trees. arXiv:quant-ph/0702160, 2007.

[CEMM98] Richard Cleve, Artur Ekert, Chiara Macchiavello, and Michele Mosca. Quantum algorithms
revisited. Proc. R. Soc. London A, 454(1969):339–354, 1998.

[CF02] Ronald Cramer and Serge Fehr. Optimal black-box secret sharing over arbitrary Abelian groups.
In Proc. CRYPTO 2002, LNCS vol. 2442, pages 272–287. Springer-Verlag, 2002.

[CRŠZ07] Andrew M. Childs, Ben W. Reichardt, Robert Špalek, and Shengyu Zhang. Every NAND formula
of size N can be evaluated in time N1/2+o(1) on a quantum computer. arXiv:quant-ph/0703015,
2007.

[FGG07] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum algorithm for the Hamiltonian
NAND tree. arXiv:quant-ph/0702144, 2007.

32

[GP03] Anna Gál and Pavel Pudlák. A note on monotone complexity and the rank of matrices. Infor-
mation Processing Letters, 87(6):321–326, 2003.

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for database search. In Proc. 28th ACM
STOC, pages 212–219, 1996.

[Gro02] Lov K. Grover. Tradeoffs in the quantum search algorithm. arXiv:quant-ph/0201152, 2002.

[GV96] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins, Baltimore, 3rd edition,
1996.

[HLŠ05] Peter Høyer, Troy Lee, and Robert Špalek. Tight adversary bounds for composite functions.
arXiv:quant-ph/0509067, 2005.

[HLŠ06] Peter Høyer, Troy Lee, and Robert Špalek. Source codes of semidefinite programs for ADV±.
http://www.ucw.cz/~robert/papers/adv/, 2006.

[HLŠ07] Peter Høyer, Troy Lee, and Robert Špalek. Negative weights make adversaries stronger. In Proc.
39th ACM STOC, pages 526–535, 2007.

[JKS03] T. S. Jayram, Ravi Kumar, and D. Sivakumar. Two applications of information complexity. In
Proc. 35th ACM STOC, 2003.

[KW93] Mauricio Karchmer and Avi Wigderson. On span programs. In Proc. 8th IEEE Symp. Structure
in Complexity Theory, 1993.

[NNP05] Ventzislav Nikov, Svetla Nikova, and Bart Preneel. On the size of monotone span programs. In
Proc. SCN 2004, LNCS vol. 3352, pages 249–262, 2005.

[RŠ07] Ben W. Reichardt and Robert Špalek. Quantum query complexity of up to 4-bit functions.
http://www.ucw.cz/~robert/papers/gadgets/, 2007.

[San95] Miklos Santha. On the Monte Carlo decision tree complexity of read-once formulae. Random
Structures and Algorithms, 6(1):75–87, 1995. Preliminary version in Proc. 6th IEEE Structure
in Complexity Theory, 1991.

[Sni85] Marc Snir. Lower bounds on probabilistic linear decision trees. Theoretical Computer Science,
38:69–82, 1985.

[SW86] Michael Saks and Avi Wigderson. Probabilistic Boolean decision trees and the complexity of
evaluating game trees. In Proc. 27th IEEE FOCS, pages 29–38, 1986.

[Sze04] Mario Szegedy. Quantum speed-up of Markov chain based algorithms. In Proc. 45th IEEE
FOCS, pages 32–41, 2004.

33

http://www.ucw.cz/~robert/papers/adv/
http://www.ucw.cz/~robert/papers/gadgets/

	Introduction
	Definitions
	Result
	Span programs and eigenvalue-zero graph eigenstates
	Span program definition
	Span program as a weighted adjacency matrix
	Span program duality
	Zero-eigenvalue eigenvectors of the span program adjacency matrix

	Small-eigenvalue spectral analysis of A_{G_P}
	General span program spectral analysis
	Two-dimensional span program spectral analysis

	Quantitative eigenvalue-zero spectral analysis
	Unified statement of results for lambda=0 and small lambda>0
	NOT gate
	Span programs for the gates in S
	Span program spectral analysis of the formula varphi
	Formula evaluation algorithm
	Intuition: Continuous-time quantum walk algorithm
	Proof of Theorem 3.1: Discrete-time quantum walk algorithm
	Construction of the coined quantum walk U_x

	Algorithm A, correctness, and query and time complexity

	Extensions
	Four-bit gates
	Eliminating the preprocessing
	Arbitrary {AND, OR, NOT, PARITY} formulas

	Open problems
	Acknowledgements

