Abstract
OBJ languages support semi-automated verification for algebraic specifications based on equational reasoning by term rewriting systems (TRS). Termination, confluence and sufficient completeness are important fundamental properties for the equational reasoning. In this article, we give light-weight methods for checking those properties in a modular way. We formalize the notion of hierarchical extension for constructor-based conditional algebraic specifications, and give sufficient conditions for those fundamental properties, which can be used for proving them incrementally.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
CafeOBJ, http://www.ldl.jaist.ac.jp/cafeobj/
Bouhoula, A., Jacquemard, F.: Sufficient Completeness Verification for Conditional and Constrained Term Rewriting Systems. Journal of Applied Logic 10(1), 127–143 (2012)
Futatsugi, K., Găină, D., Ogata, K.: Principles of proof scores in CafeOBJ. Theor. Comput. Sci. 464, 90–112 (2012)
Goguen, J.A., Winkler, T., Meseguer, J., Futatsugi, K., Jouannaud, J.-P.: Software Engineering with OBJ: Algebraic Specification in Action. In: Introducing OBJ*. Kluwers Academic Publishers (2000)
Guttag, J.V.: The specification and application to programming of abstract data types. PhD thesis, University of Toronto, Toronto, Ont., Canada, Canada (1975)
Hsiang, J.: Refutational theorem proving using term-rewriting systems. Artif. Intell. 25(3), 255–300 (1985)
Jouannaud, J.-P., Kirchner, C., Kirchner, H., Mégrelis, A.: OBJ: Programming with equalities, subsorts, overloading and parameterization. In: Grabowski, J., Lescanne, P., Wechler, W. (eds.) ALP 1988. LNCS, vol. 343, pp. 41–52. Springer (1988)
Kapur, D., Narendran, P., Rosenkrantz, D.J., Zhang, H.: Sufficient-completeness, ground-reducibility and their complexity. Acta Inf. 28(4), 311–350 (1991)
Kong, W., Ogata, K., Futatsugi, K.: Towards reliable e-government systems with the OTS/CafeOBJ method. IEICE Transactions 93-D(5), 974–984 (2010)
Lucas, S., Marché, C., Meseguer, J.: Operational termination of conditional term rewriting systems. Inf. Process. Lett. 95(4), 446–453 (2005)
Marché, C., Urbain, X.: Modular and incremental proofs of ac-termination. J. Symb. Comput. 38(1), 873–897 (2004)
Nakamura, M., Ogata, K., Futatsugi, K.: Reducibility of operation symbols in term rewriting systems and its application to behavioral specifications. J. Symb. Comput. 45(5), 551–573 (2010)
Nakamura, M., Ogata, K., Futatsugi, K.: On proving operational termination incrementally with modular conditional dependency pairs. IAENG International Journal of Computer Science 40(2), 117–123 (2013)
Nakamura, M., Ogawa, K., Futatsugi, K.: A hierarchical approach to operational termination of algebraic specifications. In: Proceedings of the International Conference on Electronics, Information and Communication, ICEIC 2013, pp. 144–145 (2013)
Ogata, K., Futatsugi, K.: Proof scores in the OTS/CafeOBJ Method. In: Najm, E., Nestmann, U., Stevens, P. (eds.) FMOODS 2003. LNCS, vol. 2884, pp. 170–184. Springer, Heidelberg (2003)
Ohlebusch, E.: Advanced Topics in Term Rewriting, 1st edn. Springer Publishing Company, Incorporated (2010)
Ouranos, I., Ogata, K., Stefaneas, P.: Formal analysis of tesla protocol in the timed OTS/CafeOBJ method. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part II. LNCS, vol. 7610, pp. 126–142. Springer, Heidelberg (2012)
Schernhammer, F., Meseguer, J.: Incremental checking of well-founded recursive specifications modulo axioms. In: Schneider-Kamp, P., Hanus, M. (eds.) PPDP, pp. 5–16. ACM (2011)
Terese: Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Science, vol. 55. Cambridge University Press (2003)
Urbain, X.: Modular & incremental automated termination proofs. J. Autom. Reasoning 32(4), 315–355 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Nakamura, M., Ogata, K., Futatsugi, K. (2014). Incremental Proofs of Termination, Confluence and Sufficient Completeness of OBJ Specifications. In: Iida, S., Meseguer, J., Ogata, K. (eds) Specification, Algebra, and Software. Lecture Notes in Computer Science, vol 8373. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54624-2_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-54624-2_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-54623-5
Online ISBN: 978-3-642-54624-2
eBook Packages: Computer ScienceComputer Science (R0)