Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8222))

  • 1111 Accesses

Abstract

Nonassociative Lambek Calculus (NL) is a pure logic of residuation, involving one binary operation (product) and its two residual operations defined on a poset [26]. Generalized Lambek Calculus GL involves a finite number of basic operations (with an arbitrary number of arguments) and their residual operations [7]. In this paper we study a further generalization of GL which admits operations whose arguments and values can be of different sorts. This logic is called Multi-Sorted Lambek Calculus mL. We also consider its variants with lattice and boolean operations. We discuss some basic properties of these logics (completeness, decidability, complexity and others) and the corresponding algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. van Benthem, J.: Language in Action. Categories, Lambdas and Dynamic Logic. North Holland, Amsterdam (1991)

    MATH  Google Scholar 

  2. Bimbó, K., Dunn, J.M.: Generalized Galois Logics. Relational Semantics of Nonclassical Logical Calculi. CSLI Lecture Notes, vol. 188 (2008)

    Google Scholar 

  3. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  4. Blyth, T.S.: Lattices and Ordered Algebraic Structures. Springer, London (2010)

    MATH  Google Scholar 

  5. Buszkowski, W.: Generative Capacity of Nonassociative Lambek Calculus. Bull. Pol. Acad. Scie. Math. 34, 507–516 (1986)

    MathSciNet  MATH  Google Scholar 

  6. Buszkowski, W.: Lambek Calculus with Nonlogical Axioms. In: Casadio, C., Scott, P.J., Seely, R.A.G. (eds.) Language and Grammar. Studies in Mathematical Linguistics and Natural Language. CSLI Lecture Notes, vol. 168, pp. 77–93 (2005)

    Google Scholar 

  7. Buszkowski, W.: Interpolation and FEP for logics of residuated algebras. Logic Journal of the IGPL 19(3), 437–454 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Buszkowski, W.: Many-sorted gaggles. A Talk at the Conference Algebra and Coalgebra Meet Proof Theory (ALCOP 2012). Czech Academy of Sciences, Prague (2012), http://www2.cs.cas.cz/~horcik/alcop2012/slides/buszkowski.pdf

  9. Buszkowski, W., Farulewski, M.: Nonassociative Lambek Calculus with Additives and Context-Free Languages. In: Grumberg, O., Kaminski, M., Katz, S., Wintner, S. (eds.) Francez Festschrift. LNCS, vol. 5533, pp. 45–58. Springer, Heidelberg (2009)

    Google Scholar 

  10. Casadio, C.: Agreement and Cliticization in Italian: A Pregroup Analysis. In: Dediu, A.-H., Fernau, H., Martín-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 166–177. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic Glimpse at Substructural Logics. Elsevier (2007)

    Google Scholar 

  12. de Groote, P., Lamarche, F.: Classical Nonassociative Lambek Calculus. Studia Logica 71(2), 355–388 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hanikowá, Z., Horčik, R.: Finite Embeddability Property for Residuated Groupoids (submitted)

    Google Scholar 

  14. Horčik, R., Terui, K.: Disjunction property and complexity of substructural logics. Theoretical Computer Science 412, 3992–4006 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jäger, G.: Residuation, structural rules and context-freeness. Journal of Logic, Language and Information 13, 47–59 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jónsson, B., Tarski, A.: Boolean algebras with operators. Part I. American Journal of Mathematics 73, 891–939 (1952)

    Article  MATH  Google Scholar 

  17. Jónsson, B., Tarski, A.: Boolean algebras with operators. Part II. American Journal of Mathematics 74, 127–162 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kaminski, M., Francez, N.: Relational semantics of the Lambek calculus extended with classical propositional logic. Studia Logica (to appear)

    Google Scholar 

  19. Kanazawa, M.: The Lambek Calculus Enriched with Additional Connectives. Journal of Logic, Language and Information 1(2), 141–171 (2002)

    MathSciNet  MATH  Google Scholar 

  20. Kandulski, M.: The equivalence of nonassociative Lambek categorial grammars and context-free grammars. Zeitschrift f. Math. Logik und Grundlagen der Mathematik 34, 41–52 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kołowska-Gawiejnowicz, M.: On Canonical Embeddings of Residuated Groupoids. In: Casadio, C., et al. (eds.) Lambek Festschrift. LNCS, vol. 8222, pp. 253–267. Springer, Heidelberg (2014)

    Google Scholar 

  22. Kołowska-Gawiejnowicz, M.: Powerset Residuated Algebras. Logic and Logical Philosophy (to appear)

    Google Scholar 

  23. Kozak, M.: Distributive Full Lambek Calculus has the Finite Model Property. Studia Logica 91(2), 201–216 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kusalik, T.: Product pregroups as an alternative to inflectors. In: Casadio, C., Lambek, J. (eds.) Computational Algebraic Approaches to Natural Language, p. 173. Polimetrica, Monza (2002)

    Google Scholar 

  25. Lambek, J.: The mathematics of sentence structure. American Mathematical Monthly 65, 154–170 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lambek, J.: On the calculus of syntactic types. In: Jakobson, R. (ed.) Structure of Language and its Mathematical Aspects, pp. 166–178. AMS, Providence (1961)

    Chapter  Google Scholar 

  27. Lambek, J.: From Categorial Grammar to Bilinear Logic. In: Schroeder-Heister, P., Došen, K. (eds.) Substructural Logics, pp. 207–237. Clarendon Press, Oxford (1993)

    Google Scholar 

  28. Lambek, J., Scott, P.J.: Introduction to higher order categorical logic. Cambridge University Press, Cambridge (1986)

    MATH  Google Scholar 

  29. Lin, Z.: Nonassociative Lambek Calculus with Modalities: Interpolation, Complexity and FEP (submitted)

    Google Scholar 

  30. Moortgat, M.: Categorial Type Logic. In: van Benthem, J., ter Meulen, A. (eds.) Handbook of Logic and Language, pp. 93–177. Elsevier, Amsterdam (1997)

    Chapter  Google Scholar 

  31. Moortgat, M.: Symmetric Categorial Grammar. Journal of Philosophical Logic 38(6), 681–710 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Buszkowski, W. (2014). Multi-Sorted Residuation. In: Casadio, C., Coecke, B., Moortgat, M., Scott, P. (eds) Categories and Types in Logic, Language, and Physics. Lecture Notes in Computer Science, vol 8222. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54789-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54789-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54788-1

  • Online ISBN: 978-3-642-54789-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics