Abstract
Financial news carry information about economical figures and indicators. However, these texts are mostly unstructured and consequently hard to be processed in an automatic way. In this paper, we present a representation formalism that supports a linguistic composition for machine learning tasks. We show an innovative approach to structuring financial texts by extracting principal indicators. Considering announcements in the monetary policy domain, we distinguish between attributes and their values and argue that attributes are to be represented as an aggregated set of economic terms, keeping their values as corresponding conditional expressions. We close with a critical discussion and future perspectives.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Federal Reserve Bank of New York, http://www.newyorkfed.org/aboutthefed/fedpoint/fed48.html
Bernanke, B.S., Kuttner, K.N.: What explains the stock market’s reaction to federal reserve policy? Working Paper 10402. National Bureau of Economic Research (April 2004)
Radford, A.: English Syntax: An Introduction. Cambridge University Press (May 2004)
Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Commun. ACM 18(11), 613–620 (1975)
Lavrenko, V., Schmill, M., Lawrie, D., Ogilvie, P., Jensen, D., Allan, J.: Language models for financial news recommendation, pp. 389–396 (2000)
Gidófalvi, G., Elkan, C.: Using news articles to predict stock price movements. Technical report, Department of Computer Science and Engineering, University of California (2003)
Fengxi, S., Liu, S., Yang, J.: A comparative study on text representation schemes in text categorization. Pattern Anal. Appl. 8(1), 199–209 (2005)
Scott, S., Matwin, S.: Feature engineering for text classification. In: Proceedings of ICML 1999, 16th International Conference on Machine Learning, pp. 379–388. Morgan Kaufmann Publishers (1999)
Frantzi, T.K., Ananiadou, S.: Automatic term recognition using contextual cues. In: Proceedings of 3rd DELOS Workshop (1997)
Sager, J.C., Dungworth, D., McDonald, P.F.: English special languages: principles and practice in science and technology. Brandstetter (1980)
Shafiei, M., Wang, S., Zhang, R., Milios, E., Tang, B., Tougas, J., Spiteri, R.: Document representation and dimension reduction for text clustering. In: ICDE Workshops, pp. 770–779 (2007)
Radford, A.: Syntactic Theory and the Structure of English: A Minimalist Approach (Cambridge Textbooks in Linguistics). Cambridge University Press (August 1997)
Schumaker, R.P., Chen, H.: Textual analysis of stock market prediction using breaking financial news: The AZFin text system. ACM Trans. Inf. Syst. 27(2) (2009)
Hagenau, M., Liebmann, M., Hedwig, M., Neumann, D.: Automated news reading: Stock price prediction based on financial news using context-specific features. In: Hawaii International Conference on System Sciences, pp. 1040–1049 (2012)
Federal Reserve Bank of St. Louis, http://timeline.stlouisfed.org/pdf/CrisisTimeline.pdf
Bird, S., Klein, E., Loper, E.: Natural Language Processing with Python, 1st edn. O’Reilly Media (July 2009)
Marcus, M., Santorini, B., Marcinkiewicz, M.A.: Building a large annotated corpus of English: The penn treebank. Computational Linguistics 19(2), 313–330 (1993)
Schwarzschild, R.: The role of dimensions in the syntax of noun phrases. Syntax 9(1), 67–110 (2006)
Pazienza, M.T., Pennacchiotti, M., Zanzotto, F.M.: Terminology extraction: An analysis of linguistic and statistical approaches. In: Sirmakessis, S. (ed.) Knowledge Mining. STUDFUZZ, vol. 185, pp. 255–279. Springer, Heidelberg (2005)
Frantzi, K., Ananiadou, S., Mima, H.: Automatic recognition of multi-word terms: the c-value/nc-value method. Int. J. on Digital Libraries 3(2), 115–130 (2000)
Java Automatic Term Extraction toolkit, http://code.google.com/p/jatetoolkit/wiki/JATEIntro
Apache OpenNLP library, http://opennlp.apache.org/
CoNLL-2000, http://www.cnts.ua.ac.be/conll2000/chunking/
Li, X.: Understanding the semantic structure of noun phrase queries. In: Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, ACL 2010, pp. 1337–1345. Association for Computational Linguistics, Stroudsburg (2010)
Milios, E., Zhang, Y., He, B., Dong, L.: Automatic Term Extraction and Document Similarity in Special Text Corpora, pp. 275–284 (August 2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Minev, M., Schommer, C. (2014). Domain-Driven News Representation Using Conditional Attribute-Value Pairs. In: Ferro, N. (eds) Bridging Between Information Retrieval and Databases. PROMISE 2013. Lecture Notes in Computer Science, vol 8173. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54798-0_11
Download citation
DOI: https://doi.org/10.1007/978-3-642-54798-0_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-54797-3
Online ISBN: 978-3-642-54798-0
eBook Packages: Computer ScienceComputer Science (R0)