Abstract
Research has shown that writing styles are influenced by an extensive array of factors that includes text genre and author’s gender. Going beyond the analysis of linguistic features, such as n-grams, stylometric variables and word categories, this paper presents an exploratory study of the role that emotions expressed in writing play to aid discriminating author gender in different text genres. In this work, the gender classification task is seen as a binary classification problem where discriminating features are taken from a vectorial space that includes emotion-based features. Results show that by exploiting the emotional information present in personal journal (diary) texts, up to 80% cross-validation accuracy with support vector machine (SVM) algorithm can be reached. Over 75% cross-validation accuracy is reached when classifying the author gender of blog texts. Our findings show positive implications of emotion-based features on assisting author’s gender classification.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alm, C.O., Roth, D., Sproat, R.: Emotions from text: machine learning for text-based emotion prediction. In: Proceedings of HLT/EMNLP, Vancouver, Canada, pp. 579–586 (2005)
Argamon, S., Koppel, M., Fine, J., Shimoni, A.R.: Gender, genre, and writing style in formal written texts. Text - Interdisciplinary Journal for the Study of Discourse 23(3), 321–346 (2003), http://www.cs.biu.ac.il/~koppel/papers/male-female-text-final.pdf (accessed online on May 05, 2012)
Argamon, S., Kopel, M., Pennbaker, J.W., Schler, J.: Mining the Blogosphere: Age, Gender and the varieties of self-expression. First Monday 12(9), 3 (2007), firstmonday.org (accessed online on May 01, 2012)
Bougie, R., Pieters, R., Zeelenberg, M.: Angry Customers Don’t Come Back, They Get Back: The Experience and Behavioral Implications of Anger and Dissatisfaction in Services. Journal of the Academy of Marketing Science 31(4), 377–393 (2003)
Bradley, M.M., Lang, P.J.: Affective norms for English words (ANEW). Instruction Manual and Affective Ratings. Technical report, The Center for Research in Psychophysiology, University of Florida (1999)
Brody, L.R., Hall, J.A.: Gender and Emotion in Context. In: Lewis, M., Haviland-Jones, J.M., Barrett, L.F. (eds.) Handbook of Emotions, ch. 24, 3rd edn., pp. 395–408. The Guilford Press (2008)
Chaplin, T.M., Cole, P.M., Zahn-Waxler, C.: Parental Socialization of Emotion Expression: Gender Differences and Relations to Child Adjustment. Emotion 5(1), 80–88 (2005)
Chaumartin, F.-R.: UPAR7: a knowledge-based system for headline sentiment tagging. In: Proceedings of the 4th International Workshop on Semantic Evaluations, pp. 422–425. ACL (2007)
Chung, C.K., Pennebaker, J.W.: Revealing dimensions of thinking in open-ended self-descriptors: An automated meaning extraction method for natural language. Journal of Research in Personality 42, 96–132 (2008)
Corney, M., de Vel, O., Anderson, A., Mohay, G.: Gender-Preferential Text Mining of E-mail Discourse. In: Proceedings of the ACSAC 2002, pp. 282–289 (2002)
Ekman, P.: Facial Expression and Emotion. American Psychologist 8(4), 376–379 (1993)
Elliott, C.: The affective reasoner: A process model of emotions in a multi-agent system. Ph.D. thesis, Institute for the Learning Sciences, Northwestern University (1992)
Nico, H.: Emotional Behavior. In: The Emotions. Studies in Emotion and Social Interaction, ch. 2. Cambridge University Press (1986)
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA Data Mining Software: An Update. SIGKDD Explorations 11(1) (2009)
Herring, S.C., Paolillo, J.C.: Gender and genre variation in weblogs. Journal of Sociolinguistics 10(4), 439–459 (2006)
Hess, U., Adams Jr., R.B., Kleck, R.E.: Facial Appearance, Gender, and Emotion Expression. Emotion 4(4), 378–388 (2004)
Heylighen, F., Dewaele, J.-M.: Variation in the Contextuality of Language: An Empirical Measure. Context in Context, Special issue of Foundations of Science 7(3), 293–340 (2002)
Juola, P.: Authorship Attribution. Foundations and Trends in Information Retrieval 1(3), 233–334 (2006)
Kakkonen, T., Kakkonen, G.G.: SentiProfiler: Creating Comparable Visual Profiles of Sentimental Content in Texts. In: Proceedings of the LaTeCH Workshop, Associated with the RANLP 2011 Conference, Hissar, Bulgaria (2011)
Kim, S.-M., Hovy, E.: Determining the Sentiment of Opinions. In: Proceedings of the 20th International Conference on Computational Linguistics, Article 1367 (2004)
Koppel, M., Argamon, S., Shimoni, A.R.: Automatically Categorizing Written Text by Author Gender. Literary and Linguistic Computing 17(4), 401–412 (2002)
Koppel, M., Schler, J., Argamon, S.: Computational methods in authorship attribution. Journal of the American Society for Information Science and Technology 60(1), 9–26 (2008)
Leach, C.W., Tiedens, L.Z.: A World of Emotions. In: Tiedens, L.Z., Leach, C.W. (eds.) The Social Life of Emotions, pp. 1–16. Cambridge University Press (2004)
Liu, B.: Sentiment Analysis and Subjectivity. In: Indurkhya, N., Damerau, F.J. (eds.) Handbook of Natural Language Processing, 2nd edn. (2010)
Liu, H., Lieberman, H., Selker, T.: Automatic Affective Feedback in an Email Browser. MIT Media Laboratory Software Agents Group Technical Report (2002), http://larifari.org/writing/
Liu, H., Lieberman, H., Selker, T.: A Model of Textual Affect Sensing using Real-World Knowledge. In: Proc. of the 2003 IUI, pp. 125–132 (2003)
McNeil, L.: Teaching an Old Genre a New Trick: The Diary on the Internet. Biography: An Interdisciplinary Quarterly 26(1), 24–48 (2003)
Melville, P., Wojciech, G., Lawrence, R.D.: Sentiment analysis of blogs by combining lexical knowledge with text classification. In: Proceedings of the 15th ACM SIGKDD. ACM (2009)
Miller, G.A.: WordNet: A Lexical Database for English. Communications of the ACM 38(11), 39–41 (1995)
Mohammad, S.M.: Portable Features for Classifying Emotional Text. In: Proceedings of the 2012 NAACL HLT, pp. 587–591 (2012)
Mohammad, S.M., Turney, P.D.: Emotions Evoked by Common Words and Phrases: Using Mechanical Turk to Create an Emotion Lexicon. In: Proceedings of the NAACL HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text, pp. 26–34 (2010)
Mohamad, S.M., Yang, T.(W.): Tracking Sentiment in mail: how genders differ on emotional axes. In: Proceedings of the 2nd Workshop on Computational Approaches to Subjectivity and Sentiment Analysis, pp. 70–79. ACL, USA (2011)
Mukherjee, A., Liu, B.: Improving gender classification of blog authors. In: Proceedings of the 2010 EMNLP, pp. 207–217. ACL, USA (2010)
Mulac, A., Lundell, T.L.: Effect of Gender-Linked Language Differences in Adult’s Written Discourse: Multivariate Tests of Language Effects. Language and Communication 14(3), 299–309 (1994)
Newman, M.L., Groom, C.J., Handelman, L.D., Pennebaker, J.W.: Gender Differences in Language Use: An Analysis of 14,000 Text Samples. Discourse Processes 45, 211–236 (2008)
Nowson, S., Oberlander, J., Gill, A.J.: Weblogs, Genres and Individual Differences. In: Proceedings of The 27th Annual Conference of the Cognitive Science Society, pp. 1666–1671 (2005)
O’Kearney, R., Dadds, M.: Developmental and gender differences in the language for emotions across the adolescent years. Cognition and Emotion 18(7), 913–938 (2004)
Ortony, A., Clore, G.L., Foss, M.A.: The Referential Structure of the Affective Lexicon. Cognitive Science 11, 341–364 (1987)
Ortony, A., Clore, G.L., Collins, A.: The Structure of the Theory. In: The Cognitive Structure of Emotions, ch. 2, pp. 15–33. Cambridge University P. (1994)
Picard, D., Boulhais, M.: Sex differences in expressive drawing. Journal of Personality and Individual Differences 51, 850–855 (2011)
Ashby Plant, E., Hyde, J.S., Keltner, D., Devine, P.G.: The Gender Stereotyping of Emotions. Psychology of Women Quarterly 24, 81–92 (2000), doi:10.1111/j.1471-6402.2000.tb01024.x
Plutchik, R.: The Nature of Emotions. American Scientist 89(4), 344–350 (2001)
Rangel, F., Rosso, P., Koppel, M., Stamatatos, E., Inches, G.: Overview of the Author Profiling Task at PAN 2013. In: Forner, P., Navigli, R., Tufis, D. (eds.) Notebook Papers of CLEF 2013 LABs and Workshops, CLEF (2013)
Shaver, P., Schwartz, J., Kirson, D., O’Connor, C.: Emotion Knowledge: Further Exploration of a Prototype Approach. In: Parrot, G.W. (ed.) Emotions in Social Psychology: Key Readings, pp. 26–56. Taylor & Francis, USA (2001)
Stone, P.J., Dunphy, D.C., Smith, M.S., Ogilvie, D.M.: The General Inquirer: A Computer Approach to Content Analysis. The MIT Press, Cambridge (1966)
Strapparava, C., Mihalcea, R.: Semeval-2007 task 14: Affective text. In: Proceedings of SemEval 2007, Prague, pp. 70–74 (2007)
Strapparava, C., Valitutti, A.: WordNet-Affect: an Affective Extension of WordNet. In: Proc. of the 4th LRE, pp. 1083–1086 (2004)
Strapparava, C., Mihalcea, R.: Learning to Identify Emotions in Text. In: Proc. of the ACM SAC 2008, pp. 1556–1560 (2008)
Thelwall, M., Bucley, K., Paltoglou, G., Cai, D.: Sentiment Strength Detection in Short Informal Text. Journal of The American Society for Information Science And Technology 61(12), 2544–2558 (2010)
Thelwall, M., Wilkinson, D., Uppal, S.: Data mining emotion in social network communication: Gender differences in MySpace. Journal of the American Society for Information Science and Technology 61(1), 190–199 (2010)
Thompson, R., Murachver, T.: Predicting gender from electronic discourse. British Journal of Social Psychology 40(2), 193–208 (2001)
Valitutti, A., Strapparava, C., Stock, O.: Developing Affective Lexical Resources. PsychNology 2(1), 61–83 (2004)
Zhang, Y., Dang, Y., Chen, H.: Gender Classification for Web Forums. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 41(4), 668–677 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Suero Montero, C., Munezero, M., Kakkonen, T. (2014). Investigating the Role of Emotion-Based Features in Author Gender Classification of Text. In: Gelbukh, A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2014. Lecture Notes in Computer Science, vol 8404. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54903-8_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-54903-8_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-54902-1
Online ISBN: 978-3-642-54903-8
eBook Packages: Computer ScienceComputer Science (R0)