Skip to main content

A Tiered Approach to the Recognition of Metaphor

  • Conference paper
Computational Linguistics and Intelligent Text Processing (CICLing 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8403))

  • 2142 Accesses

Abstract

We present a tiered-approach to the recognition of metaphor. The first tier is made up of highly precise expert-driven lexico-syntactic patterns which are automatically expended on in the second tier using lexical and dependency transformations. The final tier utilizes an SVM classifier using a variety of syntactic, semantic, and psycholinguistic features to determine if an expression is metaphoric. We focus on the recognition of metaphors in which the target is associated with the concept of “Economic Inequality” and examine the effectiveness of our approach for metaphors expressed in English, Farsi, Russian, and Spanish. Through experimental analysis we show that the proposed approach is capable of achieving 67.4% to 77.8% F-Measure depending on the language.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Shutova, E., Teufel, S.: Metaphor corpus annotated for source-target domain mappings. In: Proceedings of LREC (2010)

    Google Scholar 

  2. Lakoff, G., et al.: The contemporary theory of metaphor. Metaphor and Thought 2, 202–251 (1993)

    Article  Google Scholar 

  3. Bracewell, D.B., Tomlinson, M.T., Mohler, M.: Determining the conceptual space of metaphoric expressions. In: Gelbukh, A. (ed.) CICLing 2013, Part I. LNCS, vol. 7816, pp. 487–500. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  4. Shutova, E.: Models of metaphor in nlp. In: Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, pp. 688–697. Association for Computational Linguistics (2010)

    Google Scholar 

  5. Fass, D.: met*: A method for discriminating metonymy and metaphor by computer. Computational Linguistics 17(1), 49–90 (1991)

    Google Scholar 

  6. Shutova, E., Sun, L.: Unsupervised metaphor identification using hierarchical graph factorization clustering. In: HLT-NAACL, pp. 978–988 (2013)

    Google Scholar 

  7. Ahrens, K., Chung, S., Huang, C.: Conceptual metaphors: Ontology-based representation and corpora driven mapping principles. In: Proceedings of the ACL 2003 Workshop on Lexicon and Figurative Language, vol. 14. Association for Computational Linguistics,

    Google Scholar 

  8. Wolff, P., Gentner, D.: Evidence for role-neutral initial processing of metaphors. Journal of Experimental Psychology: Learning, Memory, and Cognition 26(2), 529 (2000)

    Google Scholar 

  9. McGlone, M.: Conceptual metaphors and figurative language interpretation: Food for thought? Journal of Memory and Language 35(4), 544–565 (1996)

    Article  Google Scholar 

  10. Lakoff, G.: Master Metaphor List. University of California (1994)

    Google Scholar 

  11. Eilts, C., Lönneker, B.: The Hamburg Metaphor Database (2002)

    Google Scholar 

  12. Bogdanova, D.: A framework for figurative language detection based on sense differentiation. In: Proceedings of the ACL 2010 Student Research Workshop, ACLstudent 2010, pp. 67–72 (2010)

    Google Scholar 

  13. Shutova, E.: Computational approaches to figurative language. PhD thesis, University of Cambridge (2011)

    Google Scholar 

  14. Mason, Z.: CorMet: A computational, corpus-based conventional metaphor extraction system. Computational Linguistics 30(1), 23–44 (2004)

    Article  Google Scholar 

  15. Martin, J.: A computational model of metaphor interpretation. Academic Press Professional, Inc. (1990)

    Google Scholar 

  16. Mohler, M., Bracewell, D., Hinote, D., Tomlinson, M.: Semantic signatures for example-based linguistic metaphor detection, 27 (2013)

    Google Scholar 

  17. Shutova, E., Sun, L., Korhonen, A.: Metaphor identification using verb and noun clustering. In: Proceedings of the 23rd International Conference on Computational Linguistics, COLING 2010, pp. 1002–1010. Association for Computational Linguistics, Stroudsburg (2010)

    Google Scholar 

  18. Strzalkowski, T., Broadwell, G.A., Taylor, S., Feldman, L., Shaikh, S., Liu, T., Yamrom, B., Cho, K., Boz, U., Cases, I., Elliot, K.: Robust extraction of metaphor from novel data, 67–76 (2013)

    Google Scholar 

  19. Rink, B., Roberts, K., Harabagiu, S., Scheuermann, R.H., Toomay, S., Browning, T., Bosler, T., Peshock, R.: Extracting actionable findings of appendicitis from radiology reports using natural language processing. AMIA Summits on Translational Science Proceedings, 221 (2013)

    Google Scholar 

  20. Bracewell, D.B., Tomlinson, M.T., Mohler, M.: Determining the conceptual space of metaphoric expressions. In: Gelbukh, A. (ed.) CICLing 2013, Part I. LNCS, vol. 7816, pp. 487–500. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  21. Nivre, J., Hall, J., Nilsson, J.: Maltparser: A data-driven parser-generator for dependency parsing. In: In Proc. of LREC-2006. (2006) 2216–2219

    Google Scholar 

  22. Broadwell, G.A., Boz, U., Cases, I., Strzalkowski, T., Feldman, L., Taylor, S., Shaikh, S., Liu, T., Cho, K., Webb, N.: Using imageability and topic chaining to locate metaphors in linguistic corpora. In: Greenberg, A.M., Kennedy, W.G., Bos, N.D. (eds.) SBP 2013. LNCS, vol. 7812, pp. 102–110. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  23. Turney, P.D., Neuman, Y., Assaf, D., Cohen, Y.: Literal and metaphorical sense identification through concrete and abstract context. In: Proceedings of the 2011 Conference on the Empirical Methods in Natural Language Processing, pp. 680–690 (2011)

    Google Scholar 

  24. Coltheart, M.: The MRC psycholinguistic database. The Quarterly Journal of Experimental Psychology 33(4), 497–505 (1981)

    Article  Google Scholar 

  25. Mohler, M., Tomlinson, M., Bracewell, D., Rink, B.: Semi-supervised methods for expanding psycholinguistics norms by integrating distributional similarity with the structure of wordnet. In: Proceedings of the 9th Language Resources and Evaluation Conference (2014)

    Google Scholar 

  26. Fellbaum, C.: WordNet, An Electronic Lexical Database. The MIT Press (1998)

    Google Scholar 

  27. Shamsfard, M., Hesabi, A., Fadaei, H., Mansoory, N., Famian, A., Bagherbeigi, S., Fekri, E., Monshizadeh, M., Assi, S.: Semi automatic development of farsnet; the persian wordnet. In: Proceedings of 5th Global WordNet Conference, Mumbai, India (2010)

    Google Scholar 

  28. Azarova, I., Mitrofanova, O., Sinopalnikova, A., Yavorskaya, M., Oparin, I.: Russnet: Building a lexical database for the russian language. In: Proceedings of Workshop on Wordnet Structures and Standardisation and How This Affect Wordnet Applications and Evaluation, Las Palmas, pp. 60–64 (2002)

    Google Scholar 

  29. Atserias, J., Villarejo, L., Rigau, G., Agirre, E., Carroll, J., Magnini, B., Vossen, P.: The MEANING Multilingual Central Repository. In: Proceedings of the 2nd Global WordNet Conference (GWC), Brno, Czech Republic (January 2004)

    Google Scholar 

  30. Rosch, E., Mervis, C.B.: Family resemblances: Studies in the internal structure of categories. Cognitive Psychology 7(4), 573–605 (1975)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bracewell, D.B., Tomlinson, M.T., Mohler, M., Rink, B. (2014). A Tiered Approach to the Recognition of Metaphor. In: Gelbukh, A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2014. Lecture Notes in Computer Science, vol 8403. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54906-9_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54906-9_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54905-2

  • Online ISBN: 978-3-642-54906-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics