Run-Time Assertion Checking of Data- and
Protocol-Oriented Properties of Java Programs:
An Industrial Case Study

Frank S. de Boer!2, Stijn de Gouw'2,
Einar Broch Johnsen?, Andreas Kohn?*, and Peter Y.H. Wong*

1 CWI, Amsterdam, The Netherlands
2 Leiden University, The Netherlands
3 University of Oslo, Norway
4 Fredhopper B.V., Amsterdam, The Netherlands

Abstract. Run-time assertion checking is one of the useful techniques
for detecting faults, and can be applied during any program execu-
tion context, including debugging, testing, and production. In general,
however, it is limited to checking state-based properties. We introduce
SAGA, a general framework that provides a smooth integration of the
specification and the run-time checking of both data- and protocol-
oriented properties of Java classes and interfaces. We evaluate SAGA,
which combines several state-of-the art tools, by conducting an industrial
case study from an eCommerce software company Fredhopper.

1 Introduction

Run-time assertion checking is one of the most useful techniques for detecting
faults, and can be applied during any program execution context, including
debugging, testing, and production [7]. Compared to program logics, run-time
assertion checking emphasizes executable specifications. Assertions in general are
clearly not executable in the sense that one cannot decide whether they hold (in
the presence of unbounded quantification). As a result, for run-time assertion
checking one has to restrict the class of assertions to executable ones. Whereas
program logics are generally applied statically to cover all possible execution
paths, which is in general undecidable, run-time assertion checking is a fully
automated, on-demand validation process which applies to the actual runs of
the program.

By their very nature, assertions are state-based in that they describe proper-
ties of the program variables, e.g. fields of classes and local variables of meth-
ods. In general, assertions as supported for example by the Java programming
language or the Java Modeling Language (JML) [3] cannot be used to specify
the interaction protocol between objects, in contrast to other formalisms such
as message sequence charts and UML sequence diagrams. Consequently, exist-
ing state-of-the-art program logics for Java are not suited for proving protocol

S. Chiba et al. (Eds.): Transactions on AOSD XI, LNCS 8400, pp. 1-26, 2014.
© Springer-Verlag Berlin Heidelberg 2014

2 F.S. de Boer et al.

properties. Moreover state-based assertions cannot be used to specify interfaces
since interfaces do not have a state!.

The main contribution of this paper is twofold. First, we introduce SAGA
(Software trace Analysis using Grammars and Attributes), a run-time checker
that provides a smooth integration of the specification and the run-time check-
ing of both data- and protocol-oriented properties of Java classes and interfaces.
SAGA combines four different components: a state-based assertion checker, a
monitoring tool, a meta-programming tool, and a parser generator. Aspect-
oriented programming is tailored for monitoring, and in contrast to transforma-
tions source of Java code or debugger-based solutions [9] it is designed for high
performance applications and supports the monitoring of precompiled libraries
for which no source code is available. The tool can be used for run-time check-
ing of any Java program, which requires specific support for the main features
listed in Table 1, as discussed in more detail in the following section. Secondly,
we evaluate SAGA by conducting an industrial case study from the eCommerce
software company Fredhopper.

Table 1. Supported features

Constructors
Inheritance
Dynamic Binding
Overloading
Static Methods
Access Modifiers

The basic idea underlying SAGA is the representation of message sequences as
words of a language generated by a grammar. Grammars allow, in a declarative
and highly convenient manner, the description of the protocol structure of the
communication events. However, the question is how to integrate such grammars
with the run-time checking of assertions, and how to describe the data flow of a
message sequence, i.e., the properties of the data communicated. We propose a
formal modeling language for the specification of sequences of messages in terms
of attribute grammars [14]. Attribute grammars allow the high-level specification
of the data-flow of message sequences (e.g., their length) in terms of user-defined
attributes of non-terminals. SAGA supports the run-time checking of assertions
about these attributes (e.g., that the length of a sequence is bounded). This
involves parsing the generated sequences of messages. These sequences them-
selves are recorded by means of a fully automated instrumentation of the given
program by AspectJ?.

1 JML uses model variables for interface specifications. However, a separate represents
clause is needed for a full specification, and such clauses can only be defined once
an implementation has been given (and is not implementation independent).

2 . eclipse.org/aspectj

www.eclipse.org/aspectj

Run-Time Assertion Checking of Data- and Protocol-Oriented Properties 3

2 The Modeling Framework

Abstracting from implementation details (such as field values of objects), an
execution of a Java program can be represented by its global communication his-
tory: the sequence of messages corresponding to the invocation and completion of
(possibly static) methods. Similarly, the execution of a single object can be rep-
resented by its local communication history, which consists of all messages sent
and received by that object. The behavior of a program (or object) can then be
defined as the set of its allowed histories. Whether a history is allowed depends
in general both on data (the contents of the messages, e.g. parameter and return
values of method calls) and protocol (the order between messages). The question
arises how such allowed sets of histories can be defined conveniently. In this sec-
tion we show how attribute grammars provide a powerful and declarative way
to define such sets. We use the interface of the Java BufferedReader (Figure 1)
as a running example to explain the basic modeling concepts. In particular, we
formalize the following property:

The BufferedReader may only be closed by the same object which cre-
ated it, and reads may only occur between the creation and closing of
the BufferedReader.

interface BufferedReader {
void close();
void mark(int readAheadlLimit);
boolean markSupported();
int read();
int read(char[] cbuf, int off, int len);
String readLine();
boolean ready();
void reset();
long skip(long n);

Fig. 1. Methods of the BufferedReader Interface

As a naive first step one might be tempted to define the behavior of
BufferedReader objects simply in terms of ‘callm(7")’ and ‘return-m(7’)’
messages of all methods ‘m’ in its interface, where the parameter types T are
included to distinguish between overloaded methods (such as read). However,
interfaces in Java contain only signatures of provided methods: methods where
the BufferedReader is the callee. Calls to these methods correspond to mes-
sages received by the object. In general the behavior of objects also depends on
messages sent by that object (i.e., where the object is the caller), and on the par-
ticular constructor (with parameter values) that created the object. Moreover,

4 F.S. de Boer et al.

it is often useful to select a particular subset of method calls or returns, instead
of using calls and returns to all methods (a partial or incomplete specification).
Finally, in referring to messages it is cumbersome to explicitly list the parameter
types. A communication view addresses these issues.

2.1 Communication View

A communication view is a partial mapping which associates a name to each mes-
sage. Partiality makes it possible to filter irrelevant events and message names
are convenient in referring to messages.

Suppose we wish to specify that the BufferedReader may only be closed
by the same object which created it, and that reads may only occur between
the creation and closing of the BufferedReader. This is a property which must
hold for the local history of all instances of java.util.BufferedReader. The
communication view in Figure 2 selects the relevant messages and associates
them with intuitive names: open, read, and close.

local view BReaderView grammar BReader.g
specifies java.util.BufferedReader {
BufferedReader (Reader in) open,
BufferedReader (Reader in, int sz) open,
call void close() close,
call int read() read,
call int read(char[] cbuf, int off, int len) read

Fig. 2. Communication view of a BufferedReader

All return messages and call messages methods not listed in the view are fil-
tered. Note how the view identifies two different messages (calls to the overloaded
read methods) by giving them the same name read. Though the above communi-
cation view contains only provided methods (those listed in the BufferedReader
interface), required methods (e.g., methods of other interfaces or classes) are also
supported. Since such messages are sent to objects of a different class (or inter-
face), one must include the appropriate type explicitly in the method signature.
For example consider the following message:

call void C.m() out

If we would additionally include the above message in the communication view,
all call-messages to the method m of class C sent by a BufferedReader would
be selected and named out. In general, incoming messages received by an ob-
ject correspond to calls of provided methods and returns of required methods.
Outgoing messages sent by an object correspond to calls of required methods

Run-Time Assertion Checking of Data- and Protocol-Oriented Properties 5

and returns of provided methods. Incoming call-messages of local histories never
involve static methods, as such methods do not have a callee.

Besides normal methods, communication views can contain signatures of con-
structors (i.e., the messages named open in our example view). Incoming calls
to provided constructors raise an interesting question: what would happen if
we select such a message in a local history? At the time of the call, the object
has not even been created yet, so it is unclear which BufferedReader object
receives the message. We therefore only allow return-messages of provided con-
structors (clearly required constructors do not pose the same problem, and con-
sequently we allow selecting both calls and returns to required constructors),
and for convenience omit return. Alternatively one could treat constructors like
static methods, disallowing incoming call-messages to constructors in local his-
tories altogether. However, this makes it impossible to express certain properties
(including the desired property of the BufferedReader) and has no advantages
over the approach we take.

Java programs can distinguish methods of the same name only if their parame-
ter types are different. Communication views are more fine-grained: methods can
be distinguished also based on their return type or their access modifiers (such as
public). For instance, consider a scenario with suggestively named classes Base
and three subclasses Sub1, Sub2, and Sub3, all of which provide a method m. The
return type of m in the Base, Subl and Sub2 classes is the class itself (i.e., Subl
for m provided by Sub1). In the Sub3 class the return type is Subl. To monitor
calls to m only with return type Subl, simply include the following event in the
view:

call Subl C.m() messagename

Local communication views, such as the one above, selects messages sent
and received by a single object of a particular class, indicated by ‘specifies
java.util. BufferedReader’. In contrast, global communication views select mes-
sages sent and received by any object during the execution of the Java program.
This is useful to specify global properties of a program. In addition to instance
methods, calls and returns of static methods can also be selected in global views.
Figure 3 shows a global view which selects all returns of the method m of the
Ping class or interface or any of its subclasses, and all calls of the Pong class (or
interface) or its subclasses. Note that communication views do not distinguish
instances of the same class (e.g., calls to ‘Ping’ on two different objects of class
‘Ping’ both get mapped to the same terminal ‘ping’). Different instances can be
distinguished in the grammar using the built-in attributes ‘caller’ or ‘callee’.

In contrast to interfaces of the programming language, communication views
can contain constructors, required methods, static methods (in global views)
and can distinguish methods based on return type or method modifiers such as
‘static’, or ‘public’. See Table 1 for a list of supported features.

6 F.S. de Boer et al.

global view PingPong grammar pingpong.g {
return void Ping.m() ping,
call void Pong.m() pong

}

Fig. 3. Global communication view

2.2 Grammars

Context-free grammars provide a convenient way to define the protocol behav-
ior of the allowed histories. The context-free grammar underlying the attribute
grammar in Figure 4 generates the valid histories for BufferedReader, describ-
ing the prefix closure of sequences of the terminals ‘open’, ‘read’, and ‘close’
as given by the regular expression (open read* close). In general, the message
names form the terminal symbols of the grammar, whereas the non-terminal
symbols specify the structure of valid sequences of messages. In our approach, a
communication history is valid if and only if it and all its prefixes are generated
by the grammar.

For a justification of this approach, see the next discussion section. While
context-free grammars provide a convenient way to specify the protocol structure
of the valid histories, they do not take data such as parameters and return values
of method calls and returns into account. Thus the question arises how to specify
the data-flow of the valid histories. To that end, we extend the grammar with
attributes. Each terminal symbol has built-in attributes named caller, callee and
the parameter names for respectively the object identities of the caller, callee and
actual parameters. Terminals corresponding to method returns additionally have
an attribute result containing to the return value. In summary, the (built-in) at-
tributes of terminals are determined from the method signatures. Non-terminals
have user-defined attributes to define data properties of sequences of terminals.
However, the attributes themselves do not alter the language generated by the
attribute grammar, they only define properties of data-flow of the history. We
extend the attribute grammar with assertions to specify properties of attributes.
For example, in the attribute grammar in Figure 4 a user-defined synthesized
attribute ‘c’ for the non-terminal ‘C’ is defined to store the identity of the object
which closed the BufferedReader (and is null if the reader was not closed yet).
Synthesized attributes define the attribute values of the non-terminals on the
left-hand side of each grammar production, thus the ‘c’ attribute is not set in
the productions of the start symbol ‘S’

The assertion allows only those histories in which the object that opened
(created) the reader is also the object that closed it. Throughout the paper the
start symbol in any grammar is named ‘S’. For clarity, attribute definitions are
written between parentheses ‘(” and ‘)’ whereas assertions over these attributes
are surrounded by braces ‘{’ and ‘}’.

Run-Time Assertion Checking of Data- and Protocol-Oriented Properties 7

S ::= open C; {assert (open.caller == null || open.caller == C;.c ||
Ci.c == null);}

| e

Cu=read Cy (C.c = C1.c3)
| close S (C.c = close.caller;)
| e (C.c = null;)

Fig. 4. Attribute Grammar which specifies that ‘read” may only be called in between
‘open’ and ‘close’, and the reader may only be closed by the object which opened it

Assertions can be placed at any position in a production rule and are evalu-
ated at the position they were written. Note that assertions appearing directly
before a terminal can be seen as a precondition of the terminal, whereas post-
conditions are placed directly after the terminal. This is in fact a generalization
of traditional pre- and post-conditions for methods as used in design-by-contract:
a single terminal ‘call-m’ can appear in multiple productions, each of which is fol-
lowed by a different assertion. Hence different preconditions (or post-conditions)
can be used for the same method, depending on the context (grammar produc-
tion) in which the event corresponding to the method call/return appears.

Attribute grammars in combination with assertions cannot express protocol
that depend on data. Such protocols are common, for instance, the method next
of an Iterator may not be called if directly hasNext was called directly before
and returns false. To express protocols depending on data we consider attribute
grammars enriched by conditional productions [18]. In such grammars, a pro-
duction is chosen only when the given condition (a boolean expression over the
inherited attributes) for that production is true. Hence conditions are evaluated
before any of the symbols in the production are parsed, before synthesized at-
tributes of the non-terminals appearing in the production are set and before
assertions are evaluated. In contrast to assertions, conditions in productions af-
fect the parsing process. The Worker.g grammar in the case study contains a
conditional production for the ‘I’ non-terminal.

2.3 Discussion

We now briefly motivate our choice of attribute grammars extended by assertions
as specifications and discuss its advantages over alternative formalisms.

Instead of context-free grammars, we could have selected push-down automata
to specify protocol properties (formally these have the same expressive power).
Unfortunately push-down automata cannot handle attributes. An extension of
push-down automata with attributes results in a register machine. From a user
perspective, the declarative nature and higher abstraction level of grammars
(compared to the imperative and low-level nature of automata) makes them
much more suitable than automata as a specification language. In fact, a push-
down automaton which recognizes the same language as a given grammar is an
implementation of a parser for that grammar.

8 F.S. de Boer et al.

Both the BufferedReader above and the case study use only regular grammars.
Since regular grammars simplify parsing compared to context-free grammars, the
question arises if we can reasonably restrict to regular grammars. Unfortunately
this rules out many real-life use cases. For instance, the following grammar in
EBNF specifies the valid protocol behavior of a stack:

S ::= (push S pop 7)*

It is well known that the language generated by the above grammar is not
regular, so regular grammars (without attributes) cannot be used to enforce the
safe use of a stack. It is possible to specify the stack using an attribute which
counts the number of pushes and pops:

S ::= Sy push (S.ent = Sy.ent + 1)
| S1ipop (S.ent = Si.cnt —1){assert S.ent >=0;}
| € (S.ent = 0)

The resulting grammar is clearly less elegant and less readable: essentially it en-
codes (instead of directly expresses, as in the grammar above) a protocol-oriented
property as a data-oriented one. The same problem arises when using regular
grammars to specify programs with recursive methods. Thus, although theoreti-
cally possible, we do not restrict to regular grammars for practical purposes.

Ultimately the goal of run-time checking safety properties is to prevent unsafe
ongoing behavior. To do so, errors must be detected as soon as they occur and
the monitor must immediately terminate the system: it cannot wait until the
program ends to detect errors. In other words, the monitor must decide after
every event whether the current history is still valid. The simplest notion of
a valid history (one which should not generate any error) is that of a word
generated by the grammar. One way of fulfilling the above requirement, assuming
this notion of validity, is to restrict to prefix-closed grammars. Unfortunately, it
is not possible to decide whether a context-free grammar is prefix-closed. The
following lemmas formalize this result:

Lemma 1. Let Ly be the set of all accepting computation histories® of a Turing
Machine M. Then the complement Lys is a context-free language.

Proof. See [20].
Lemma 2. [t is undecidable whether a context-free language is prefix-closed.

Proof. We show how the halting problem for M (which is undecidable) can be
reduced to deciding prefix-closure of Lj;. To that end, we distinguish two cases:

1. M does not halt. Then Ly is empty so Ly is universal and hence prefix-
closed.

3 A computation history of a Turing Machine is a sequence Co#C1#Ca# . .. of con-
figurations C;. Each configuration is a triple consisting of the current tape contents,
state and position of the read/write head. Due to a technicality, the configurations
with an odd index must actually be encoded in reverse.

Run-Time Assertion Checking of Data- and Protocol-Oriented Properties 9

2. M halts. Then there is an accepting history h € Ly (and h ¢ Ljys). Extend
h with an illegal move (one not permitted by M) to the configuration C,
resulting in the history h#C'. Clearly h#C' is not a valid accepting history,
so h#C € Ly;. But since h ¢ Ly, Ly is not prefix-closed.

Summarizing, M halts if and only if Ly is not prefix-closed. Thus if we could
decide prefix-closure of the context-free language (lemma 1) Ljs, we could decide
whether M halts.

Since prefix-closure is not a decidable property of grammars (not even if they
don’t contain attributes) we propose the following alternative definition for the
valid histories. A communication history is valid if and only if it and all its
prefixes are generated by the grammar. Note that this new definition naturally
fulfills the above requirement of detecing errors after every event. And further-
more, this notion of validity is decidable assuming the assertions used in the
grammar are decidable. As an example of this new notion of validity, consider
the following modification of the above grammar:

T:=S {assert S.cnt >= 05}
S =571 push (S.cnt = Sy.cnt + 1)

| S1pop (S.ent= Si.cnt—1)

| e (S.ent = 0)

Note that the history push pop is a word generated by this grammar, but not its
prefix pop, which as such will generate an error (as required). Note that thus in
general invalid histories are guaranteed to generate errors. On the other hand,
if a history generates an error all its extensions are therefore also invalid.

Observe that our approach monitors only safety properties (‘prevent bad be-
havior’), not liveness (‘something good eventually happens’). This restriction is
not specific to our approach: liveness properties in general cannot be rejected
on any finite prefix of an execution, and monitoring only checks finite prefixes
for violations of the specification. Most liveness properties fall in the class of
the non-monitorable properties [2,19]. However it is possible to ensure liveness
properties for terminating programs: they can then be reformulated as safety
properties. For instance, suppose we want to guarantee that a method void m()
is called before the program ends. Introduce the following global view:

global view livenessM {
call void C.m() m,
return static void C.main(String[]) main

}

The occurence of the ‘main’ event (i.e., a return of the main method of the
program) signifies the program is about to terminate. Define the EBNF grammar
S :=¢€|m | m+ main

10 F.S. de Boer et al.

(where '+’ stands for one or more repetitions). This grammar achieves the desired
effect since the only terminating executions allowed are those containing m. In
local views a similar effect is obtained by including the method finalize instead
of main.

3 Tool Architecture

In this section we describe the tool architecture of the run-time assertion checker.
The checker integrates four different components: a state-based assertion checker,
a parser generator, a monitoring tool, and a general tool for meta-programming.
These components are traditionally used for very diverse purposes and normally
do not need to interact with each other. We investigate requirements needed
to achieve a seamless integration, motivated by describing the workflow of the
run-time checker. Finally, we instantiate the components with actual tools and
evaluate them.

3.1 Workflow

A user starts executing a Java class with a main statement. Suppose that during
execution, a method listed in a communication view is called. The history should
be updated to reflect the addition of the method call. Thus the question arises
how to represent the history. A meta-program generates for each message in
the communication view a class (subsequently called ‘token classes’) containing
the following fields: the object identitities of the caller and callee, the actual
parameter values, and for return messages additionally a field result to store
the return value. The history can then be represented as a Java List of instances
of token classes.

Next, the monitoring tool should update the history whenever a call or
return listed in a view occurs. Thus the monitoring tool should be capable of ex-
ecuting user-defined code directly before method calls and directly after method
returns. Moreover, it must be able to read the identity of the callee, caller, and
parameters/return-value.

After the history is updated the SAGA must decide whether it still satisfies
the specification (the attribute grammar). Observe that a communication history
can be seen as a sequence of tokens (in our setting: communication events). Since
the attribute grammar together with the assertions generate the language of
all valid histories, checking whether a history satisfies the specification reduces
to deciding whether the history can be parsed by a parser for the attribute
grammar, where moreover during parsing the assertions must evaluate to true.

Therefore the parser generator creates a parser for the given attribute gram-
mar. Since the history is a list of token class objects, the parser must support
parsing streams of user-defined token types. As the (user-defined) attributes
of non-terminals in the grammar are defined in terms of built-in attributes of
terminals (recall those are for example, actual parameter values), and clearly
the built-in attributes are Java objects, the user-defined attributes must also be

Run-Time Assertion Checking of Data- and Protocol-Oriented Properties 11

Java objects. Consequently the target language for the parser generator must
be Java, and it must support executing user-defined Java code to define the
attribute value in rule actions. The use of Java code to define attribute values
ensures they are computable. Furthermore, assertions are allowed in-between
any two (non)-terminals, thus the parser generator should support user-defined
actions between arbitrary grammar symbols. Once the parser is generated, it is
triggered whenever the history of an object is updated.

During parsing, the state-based assertion checker proceeds to evaluate the
assertions in the grammar on the newly computed attribute values. The result is
either a parse or assertion error, which indicates that the current communication
history has violated the specification in the attribute grammar, or a parse tree
with new attribute values.

3.2 Implementation

In this section we instantiate each of the four different components (meta-
programming, monitoring tool, parser generator, and state-based run-time as-
sertion checker) with a state-of-the art tool. We report on our experiences with
the particular tools and discuss the extent to which the previously formulated
requirements are fulfilled.

Rascal [13] is a powerful tool-supported meta-programming language tailored
for program analysis, program transformation, and code generation. We have
written a Rascal program of approximately 600 lines in total which generates the
token class for each message in the view, and generates glue code to trigger the
AspectJ and parser at the appropriate times. Overall our experience with Rascal
was quite positive: its powerful parsing, pattern matching, and transforming
concrete syntax features were indispensable in the implementation of SAGA.

As the parser generator we tested ANTLR [17], a state-of-the-art parser gen-
erator. It generates fast recursive descent parsers for Java, has direct support
for both synthesized and inherited attributes, it supports grammars in EBNF
form and most importantly allows a custom stream of token classes. It even sup-
ports conditional productions: such productions are only taken during parsing
whenever an associated Boolean expression (the condition) is true. Attribute
grammars with conditional productions express protocols that depend on data,
and typically are not context-free. The worst-case time complexity any parser
ANTLR generates is quadratic in the number of tokens to parse. The main draw-
backs of ANTLR are that it can only handle LL(*) grammars?, and its lack of
support for incremental parsing, though support for incremental is planned by
the ANTLR developers. An incremental parser computes a parse tree for the
new history based on the parse trees for prefixes of the history. In our setting,
since the attribute grammar specifies invariant properties of the ongoing behav-
ior, a new parse tree is computed after each call/return, hence parse trees for
all prefixes of the current history can be exploited for incremental parsing [11].

4 A strict subset of the context-free grammars. Left-recursive grammars are not LL(*).
A precise definition can be found in [17].

12 F.S. de Boer et al.

We have not been able to find any Java parser generator which supported general
context-free grammars and incremental parsing of attribute grammars.

We have tested two state-based assertion languages: standard Java assertions
and the Java Modeling Language (JML). Both languages suffice for our pur-
poses. JML is far more expressive than the standard Java assertions, though
its tool support is not ready for industrial usage. In particular, the last stable
version of the JML run-time assertion checker dates back over 8 years, when
for example generics were not supported yet. The main reason is that JML’s
run-time assertion checker only works with a proprietary implementation of the
Java compiler, and unsurprisingly it is costly to update the propietary compiler
each time the standard compiler is updated. This problem is recognized by the
JML developers [4]. OpenJML®, a new pre-alpha version of the JML run-time
assertion checker integrates into the standard Java compiler, and initial tests
with it provided many valuable input for real industrial size applications. See
the Sourceforge tracker for the kind of issues we have encountered when using
OpenJML.

|nter-] Java Attr.
face [II::] V'?W Asserts [‘l:h Gramm

e . e

=
o)

=) Rascal ANTLR
3 . . .

3 .

o)
o Y Y Y L
(] NEng s istar Token Parser
% P y Classes Java Src
2 T T 1 i

v Y LA Y
AspectJ Compiler (ajc)

apod alkg

Fig. 5. SAGA Tool Architecture

Aspects. Aspect] is tailored for monitoring. It can intercept method calls and
returns conveniently with pointcuts, and weave in user-defined code (advices)
which is executed before or after the intercepted call. In our case the pointcuts
correspond to the calls and returns of the messages listed in the communication
view. The advice consists of code which updates the history. The code for the
aspect is generated from the communication view automatically by the Rascal

5 jmlspecs.sourceforge.net

jmlspecs.sourceforge.net

Run-Time Assertion Checking of Data- and Protocol-Oriented Properties 13

meta-program. Advice is woven into Java source code, byte code, or at class
load-time fully automatically by AspectJ. We use the inter-type declarations of
AspectJ to store the local history of an object as a field in the object itself.
This ensures that whenever the object goes out of scope, so does its history
and consequently reduces memory usage. Clearly the same does not hold for
global histories, which are stored inside a separate Aspect class. Figure 6 shows
a generated aspect. The second and third lines specify the relevant method. The
fourth line binds variables (‘clr’, ‘cle’, ...) to the appropriate objects. The fifth
line ensures that the aspect is applied only when Java assertions are turned on.
Assertions can be turned on or off for each communication view individually.
The fifth line contains the advice that updates the history. Note that since the
event came was defined in a local view, the history is treated as a field of the
callee (and will not persist in the program indefinitely but rather is garbage
collected as soon as callee object itself is).

/* call int read(char[] cbuf, int off, int len); x/
before(Object clr, BufferedReader cle, char[] cbuf, int off, in len):
(call(int *x.read(char[], int, int))
&& this(clr) && target(cle) && args(cbuf, off, len)
&& if (BReaderHistoryAspect .class.desiredAssertionStatus())) {
cle.h.update(new call_push(clr, cle, cbuf, off, len));

Fig. 6. Aspect for the event ‘call int read(char[] cbuf, int off, int len)’

We have investigated two alternatives for the monitoring component not based
on aspect-oriented programming: Rascal and Sun’s implementation of the Java
Debugging Interface. With Rascal one can weave advice by defining a transfor-
mation on the actual Java source code of the program to test. This requires
a full Java grammar (which must be kept in sync with the latest updates to
Java). To capture the identity of the callee, parameter values and return value
of a method, one only needs to transform that particular method (i.e., locally).
But inside the method there is no way to access the identity of the caller. Java
does offer facilities to inspect stack frames, but these frames contain only static
entities, such as the name of the method which called the currently executing
method, or the type of the caller, but not the caller itself. To capture the caller,
a global transformation at all call-sites is needed (and in particular one needs to
have access to the source code of all clients which call the method). The same
problem arises in monitoring calls to required methods. Finally, it proved to
quickly get very complex to handle all Java features. We wrote an initial ver-
sion of a weaver in Rascal which already took over 150 lines (over half of the
full checker at the time) without supporting method calls appearing inside ex-
pressions, inheritance and dynamic binding. This approach is also unsuitable for

14 F.S. de Boer et al.

black-box testing where only byte code is available (limiting the applicability of
the tool). In summary, it is possible to implement monitoring by defining a code
transformation in Rascal, but this rules out black-box testing and quickly gets
complex due to the need for a full (up to date) Java grammar and the complexity
of the full Java language.

The Sun debugger is part of the standard Java Development Kit, hence main-
tenance of the debugger is practically guaranteed. The debugger starts the origi-
nal user program in a separate virtual machine which is monitored for occurences
of MethodEntryEvent (method calls) and MethodExitEvent (method returns).
Whenever such an event occurs the debugger can execute an event handler. How-
ever accessing the values of the parameters and return value of events is difficult,
one has to use low-level StackFrames. As a major disadvantage, we found that
the debugger is very slow (an order of magnitude slower than AspectJ), in fact it
was responsible for the majority of the overhead of the run-time checker. Finally,
in contrast to AspectJ it not possible to add fields to objects, thus local histories
never go out of scope, even if the object itself is already long destroyed.

In summary, the use of aspect-oriented programming greatly improved per-
formance compared to the debugger-based solution and was much simpler than
implementing our own weaver with code transformations, especially to handle
intricate language features.

4 Case Study

Fredhopper provides the Fredhopper Access Server (FAS). Tt is a distributed
concurrent object-oriented system that provides search and merchandising ser-
vices to eCommerce companies. Briefly, FAS provides to its clients structured
search capabilities within the client’s data. Each FAS installation is deployed to
a customer according to the FAS deployment architecture (See Figure 7).

FAS consists of a set of live environments and a single staging environment. A
live environment processes queries from client web applications via web services.
FAS aims at providing a constant query capacity to client-side web applications.
A staging environment is responsible for receiving data updates in XML for-
mat, indexing the XML, and distributing the resulting indices across all live
environments according to the Replication Protocol. The Replication Protocol is
implemented by the Replication System. The Replication System consists of a
SyncServer at the staging environment and one SyncClient for each live envi-
ronment. The SyncServer determines the schedule of replication, as well as its
content, while SyncClient receives data and configuration updates according to
the schedule.

Replication Protocol

The SyncServer communicates to SyncClients by creating Worker objects. Work-
ers serve as the interface to the server-side of the Replication Protocol. On the
other hand, SyncClients schedule and create ClientJob objects to handle commu-
nications to the client-side of the Replication Protocol. When transferring data

Run-Time Assertion Checking of Data- and Protocol-Oriented Properties 15

Configurations

s
changes N
N
Live Client-side
Environment Web App
Staging :\\ Internet
Environment N
Client-side
Web A
Data updates Live . PP
Environment n
L] Load
i Data Data and Config - balancer
Manager Updates
Client-side
Web App

Live
Environment

Fig. 7. An example FAS deployment

between the staging and the live environments, it is important that the data re-
mains immutable. To ensure immutability without interfering the read and write
accesses of the staging environment’s underlying file system, the SyncServer cre-
ates a Snapshot object that encapsulates a snapshot of the necessary part of
the staging environment’s file system, and periodically refreshes it against the
file system. This ensures that data remains immutable until it is deemed safe
to modify it. The SyncServer uses a Coordinator object to determine the safe
state in which the Snapshot can be refreshed. Figure 8 shows a UML sequence
diagram concerning parts of the replication protocol with the interaction be-
tween a SyncClient, a ClientJob, a Worker, a SyncServer, a Coordinator, and a
Snapshot. The diagram also shows a Util class that provides static methods for
writing to and reading from Stream. The figure assumes that SyncClient has al-
ready established connection with a SyncServer and shows how a ClientJob from
the SyncClient and a Worker from a SyncServer are instantiated for interaction.
For the purpose of this paper we consider this part of the Replication Protocol
as a replication session.

4.1 Specification

In this section we show how to modularly decompose object interaction behavior
depicted by the UML sequence diagram in Figure 8 using SAGA. Figure 9 shows
the corresponding interfaces and classes, note that we do not consider SyncClient
as our interest is in object interactions of a replication session, that is after
ClientJob.start() has been invoked.

16 F.S. de Boer et al.

:SyncClient| :SyncServeﬂPCoordinatoﬂ FSnapshot‘Util‘
= 1
new :ClientJob
A I
start ()
getWorker (this)
< new
start ()
start (this)

refresh()

establish(sn)

alt]

[sn != LIST]
reg(sn)

getSnapshot () N
Snapshot_snapshotl]
getItems(sn)

List<Item> items|]

loop

[item : items]
write(item.getName())

List<Item> items
loop |

[more items
transfer(item)

[sn = LIST]
nothing to do

finish(this)
u clear()

Fig. 8. Replication interaction

The protocol descriptions and specifications considered in this case study
have been obtained by manually examining the behavior of the existing imple-
mentation, by formalizing available informal documentations, and by consulting
existing developers on intended behavior. Here we first provide such informal
descriptions of the relevant object interactions:

— Snapshot: at the initialization of the Replication System, refresh should be
called first to refresh the snapshot. Subsequently the invocations of methods
refresh and clear should alternate.

— Coordinator: neither of methods start and finish may be invoked twice in
a row with the same argument, and method start must be invoked before
finish with the same argument can be invoked.

— Worker: establish must be called first. Furthermore, reg may be called if
the input argument of establish is not “LIST” but the name of a specific
replication schedule, and that reg must take that name as an input argu-
ment. When the reg method is invoked and before the method returns, the
Worker must obtain the replication items for that specific replication sched-
ule via method items of the Snapshot object. The Snapshot object must be
obtained via method snapshot of its SyncServer, which must be obtained
via the method server. It must notify the name of each replication item to

Run-Time Assertion Checking of Data- and Protocol-Oriented Properties 17

interface Snapshot { interface SyncServer {

void refresh(); Snapshot snapshot () ;

void clear(); }

List<Item> items(String sn);

} interface Coordinator {
void start(Worker t);

interface Worker { void finish(Worker t);

void establish(String sn); }

List<Item> reg(String sn);

void transfer (Item item); class Util {

SyncServer server(); static void write(String s) { .. }

} }

Fig. 9. Interfaces of Replication System

its interacting SyncClient. This notification behavior is implemented by the
static method write of the class Util. The method reg also checks for the
validity of each replication item and so the method must return a subset of
the items provided by the method items. Finally transfer may be invoked
after reg, one or more times, each time with a unique replication item, of
type Item, from the list of replication items, of type List<Item>, returned
from reg.

Figure 10 specifies communication views. They provide partial mappings from
message types (method calls and returns) that are local to individual objects to
grammar terminal symbols. Note that the specification of the Worker’s behavior
is modularly captured by two views: WorkerHistory and WorkerRegHistory.
The view WorkerHistory exposes methods establish, reg, and transfer. Us-
ing this view we would like to capture the overall valid interaction in which
Worker is the callee of methods, and at the same time the view helps ab-
stracting away the implementation detail of individual methods. The view
WorkerRegHistory, on the other hand, captures the behavior inside reg. Ac-
cording to the informal description above, the view projects incoming method
calls and returns of reg, outgoing method calls to server and items, as well as
the outgoing static method calls to write.

We now define the abstract behavior of the communication views, that
is, the set of allowable sequences of interactions of objects restricted
to those method calls and returns mapped in the views. Each local
view also defines the file containing the attribute grammar, whose termi-
nal symbols the view maps method invocations and returns to. Specifi-
cally, Figure 11 shows the attribute grammars Snapshot.g, Coordinator.g,
Worker.g and WorkerReg.g for views SnapshotHistory, CoordinatorHistory,
WorkerHistory and WorkerRegHistory respectively.

18 F.S. de Boer et al.

local view SnapshotHistory local view CoordinatorHistory
grammar Snapshot.g grammar Coordinator.g
specifies Snapshot { specifies Coordinator {

call void refresh() rf, call void start(Worker t) st,
call void clear() cl call void finish(Worker t) fn
} }

local view WorkerHistory grammar Worker.g
specifies Worker {

call void establish(String sn) et,

call List<Item> reg(String sn) rg,

return List<Item> reg(String sn) is,

call void transfer(Item item) tr

}

local view WorkerRegHistory grammar WorkerReg.g
specifies Worker {

call List<Item> reg(String sn) rg,

return List<Item> reg(String sn) is,

return Snapshot SyncServer.snapshot() sp,

call List<Item> Snapshot.items(String sn) ls,
return List<Item Snapshot.items(String sn) 1i,
call static void Util.write(String s) wr

Fig. 10. Communication Views

The simplest grammar Snapshot . g specifies the interaction protocol of Snap-
shot. It focuses on invocations of methods refresh and clear per Snapshot ob-
ject. The grammar essentially specifies the regular expression (refresh clear)x.

The grammar Coordinator.g specifies the interaction protocol of Coordina-
tor. It focuses on invocations of methods start and finish, both of which take
a Worker object as the input parameter. These method calls are mapped to ter-
minal symbols st and fn, while their inherited attribute is a HashSet, recording
the input parameters, thereby enforcing that for each unique Worker object as
an input parameter only the set of sequences of method invocations defined by
the reqular expression (start finish)x is allowed.

The grammar Worker . g specifies the interaction protocol of Worker It focuses
on invocations and returns of methods establish, reg and transfer. The gram-
mar specifies that for each Worker object, establish must be first invoked, then
followed by reg, and then zero or more transfer, that is, the regular expression
(establish reg transferx). We use the attribute definition of the grammar
to ensure the following:

— The input argument of establish and reg must be the same;
— reg can only be invoked if the input argument of establish is not “LIST”;

Run-Time Assertion Checking of Data- and Protocol-Oriented Properties 19

Su= T (T.ts=new HashSet();)
-] ; .
Si—e|rfT T ::=¢c| st {assert | T.ts.contains(st.t);}
(T.ts.add(st.t);) Th (Th.ts =T .ts;)
To=cel|cS .
| fn {assert T'.ts.contains(fn.t);}
(a) Snapshot.g (T.ts.remove(fn.t);) Th (Th.ts=T.ts;)

(b) Coordinator.g

e|letT (T'.d=et.sn;)
=€ | {!"LIST".equals(T".d);}? rg {assert rg.sn.equals(7.d);} U
n=¢€|is V (V.n=new ArrayDeque(is.result) ;)
e|tr {assert V.m.peek().equals(tr.item);}
(V.m.popO;) Vi (Vi.m=V.m;)
(c) Worker.g

ST !
1

/*S accepts call to Worker.reg() and, records */

/*the input schedule name, also S allows */

/*arbitary calls to SyncServer.snapshot() and Util.write() */
S t=¢€|lwrS|spS|rgT (T.d=et.sn;)

/*T accepts and stores the return */
/*snapshot object from SyncServer.snapshot() */
T w=¢€|spV (V.d=T.d; U.s = sp.result;)

/*U ensures call items() is called on the same snapshot object */
/*U ensures the replication items for the correct schedule */
/*are retrieved */
U == €| ls {assert [s.callee.equals(U.s);

assert [s.sn.equals(U.d);} V (V.s =U.s;)

/*V records replication items and their name returned from item() */
V u=¢€|li W (W.is = new HashSet(/i.result);

W .ns = new HashSet();

for (Item i :W.is) { W.ns.add(i.name()); })

/*W ensures all replication items are processed */
W = ¢e|wr (W.ns.remove(wr.s);) Wy (Wy.ns =W.ns; W;.is =W .is;)
| is {assert W .is.containsAl1l(is.result) ;
assert W.ns.isEmpty();} X

X =¢e|lspX|rgX
(d) WorkerReg.g

Fig. 11. Attribute Grammars

20 F.S. de Boer et al.

— The return value of reg is a list of Item objects such that transfer is invoked
with each of Item in that list from position 0 to the size of that list.

The grammar WorkerReg.g specifies the behavior of the method reg
of Worker. It focuses on the invocations and returns of method reg of
Worker as well as the outgoing method calls and returns of Util.write and
SyncServer.snapshot and Snapshot.items. At the protocol level the grammar
specifies the regular expression (snapshot items writex) inside the invocation
method reg. We use attribute definition to ensure the following:

— Snapshot.items must be called with the input argument of reg and it must
be called on the Snapshot object that is identical to the return value of
SyncServer.snapshot;

— The static method Util.write must be invoked with the value of Item.name
for each Item object in the Collection returned from Snapshot.items;

— The returned list of Item objects from reg must be a subset of that returned
from Snapshot.items.

Notice that methods Util.write and SyncServer.snapshot may be invoked
outside of the method reg. However, this particular behavioral property does
not specify the protocol for those invocations. The grammar therefore abstracts
from these invocations by allowing any number of calls to Util.write and
SyncServer. snapshot before and after reg.

4.2 Experiment

We applied SAGA to the Replication System. The current Java implementation
of FAS has over 150,000 lines of code, and the Replication System has approxi-
mately 6400 lines of code, 44 classes, and 5 interfaces.

We have successfully integrated the SAGA into the quality assurance process
at Fredhopper. The quality assurance process includes automated testing that
includes automated unit, integration, and system tests as well as manual accep-
tance tests. In particular system tests are executed twice a day on instances of
FAS on a server farm. Two types of system tests are scenario and functional
testing. Scenario testing executes a set of programs that emulate a user and
interact with the system in predefined sequences of steps (scenarios). At each
step they perform a configuration change or a query to FAS, make assertions
about the response from the query, etc. Functional testing executes sequences of
queries, where each query-response pair is used to decide on the next query and
the assertion to make about the response. Both types of tests require a running
FAS instance and as a result we may leverage SAGA by augmenting these two
automated test facilities with run-time assertion checking using SAGA.

To integrate of SAGA with the system tests, we employ Apache Maven tool®,
an open source Java-based tool for managing dependencies between applications
and for building dependency artifacts. Maven consists of a project object model

5 maven. apache.org

maven.apache.org

Run-Time Assertion Checking of Data- and Protocol-Oriented Properties 21

class WKImpl extends Thread
implements Worker {
wl:Worker ‘ ’w2 :Worker ‘ ’ :Coordinator ‘ final Coordinator c;
WKImpl(Coordinator c) {
this.c = c; }
public void run() {
try { .. c.start(this);

start(this)

—Y

finish(this)

D
dl } finally {
finish(this)%L c.finish(this); .. }}}
(a) Violating histories (b) WKImpl

Fig. 12. Incorrect behavior

(POM), a set of standards, a project lifecycle, and an extensible dependency
management and build system via plug-ins. We use its build system to auto-
matically generate and package the parser/lexer of attribute grammars as well
as aspects from views and grammars. We expose the packaged aspects, parser,
and lexer to FAS instance on the server farm and employ Aspectj using load-
time weaver for monitoring method calls/returns during the execution of FAS
instances on the server farm. Table 2 shows the number of join point matches
during the execution of 766 replication sessions over live client data. Figure 13
shows the exection time of the 766 replication sessions with and without the
integration of SAGA in milliseconds. Despite the fact that we cannot control
the exact flow of control of the replication sessions (due to dependence on user
input), the graph clearly shows that the integration of SAGA has minimal per-
formance impact on the execution time.

Table 2. Join point matches in 766 replication sessions

Join point Terminal Match
call static write wr 247446
return snapshot sp 3061
call transferItem tr 1101
return reg (WorkerHistory) is 765
return reg (WorkerRegHistory) is 765
call establish et 766
call reg (WorkerHistory) rg 765
call reg (WorkerRegHistory) rg 765
return items Ui 765
call start st 766
call finish fn 766
call items ls 765
call refresh rf 766

call clear cl 766

22 F.S. de Boer et al.

30000

25000 v

20000 f

15000 __J ——With SAGA
_ Without SAGA

10000 ==

5000

Fig. 13. Comparison of the execution time (milliseconds) of the replication sessions
with and without the integration of SAGA

During this session we have found an assertion error at join point call finish
due to the condition T'.ts.contains(fn.t) not being satisfied at non-terminal
T of the grammar Coordinator.g. Specifically, the implementation of Worker
(WKImpl) that invoke finish before start. Figure 12(a) shows the sequence di-
agram automatically generated from the output of SAGA on the invalid histories
causing the assertion error. Figure 12(b) shows part of the implementation of
WKImpl. It turns out that in the run method of WKImpl, the method start is
invoked inside a try block while the method finish is invoked in the correspond-
ing finally block. As a result when there is an exception being thrown by the
execution preceding the invocation of start inside the try block, for example a
network disruption, finish would be invoked without start being invoked.

5 Conclusion

We developed SAGA, a run-time checker which fully automatically checks
properties of both the protocol behavior and data-flow of message sequences
in a declarative manner. We identified the different components of SAGA and
evaluated SAGA on an industrial case study of the eCommerce company Fred-
hopper. The results of this case study show the feasability of our method for
run-time verification in industrial practice (it has already led to the integration
of SAGA into the software lifecycle at Fredhopper), in contrast to methods for
static verification which require both an in-depth knowledge of the case study
and the underlying theorem prover. A beta version of SAGA can be found on
http://www.cwi.nl/~cdegouw.

Related Work. A preliminary version of a prototype of our tool containing some
of the basic underlying ideas was presented at the workshop Formal Techniques

http://www.cwi.nl/~cdegouw

Run-Time Assertion Checking of Data- and Protocol-Oriented Properties 23

for Java-Like Programs 2010 and appeared in its informal proceedings’. In the
current paper we apply and evaluate a new version to an industrial case study
and succesfully integrate SAGA into the quality assurance process of Fredhopper.
Based on this application and evaluation we extended our framework to support
a more general class of grammars to specify data-dependent protocol behavior.
Furthermore, The new version features a tighter integration of attribute grammars
and assertions. Finally the support for the features listed in Table 1 is new.
There exist many other interesting approaches to monitoring message se-
quences, none of which address their integration with the general context of
run-time assertion checking. Consequently, all the other approaches only allow
a combination of a very restricted class of data-oriented properties and protocol
properties. For example, Martin et al. [15] introduce a Program Query Language
(PQL) for detecting errors in sequences of communication events. PQL was up-
dated last in 2006 and does not support user-defined properties of data. Allan
et al. [1] develop an extension of AspectJ with a history-based language fea-
ture called Tracematches that enables the programmer to trigger the execution
of extra code by specifying a regular pattern of events in a computation trace.
The underlying pattern matching involves a binding of values to free variables.
Nobakht et al. [16] monitors calls and returns with the same Java Debugger
Architecture we have also evaluated in the implementation section. The debug-
ger is very slow compared to aspect-oriented approaches. Their specification
language is equivalent in expressive power to regular expressions. Because the
grammar for the specifications is fixed, the user cannot specify a convenient
structure themselves, and data is not considered. Chen et al. [5] present Java-
MOP, a run-time monitoring tool based on aspect-oriented programming which
uses context-free grammars to describe properties of the control flow of histories.
However, properties on the data-flow are predefined built-in functions (basically
Aspectd functions such as a ‘target’ to bind the callee and ‘this’ to bind the
caller, comparable to built-in attributes of terminals in our setting). This limits
the expression of data properties. Though, to circumvent this limitation one may
hack general properties into the tool implementation. In contrast, our approach
supports a general methodology to introduce systematically user-defined prop-
erties, by means of attributes of non-terminals. Furthermore, SAGA supports
conditional productions which are essential to specify protocols dependent on
data in a declarative manner. Finally, JavaMOP does not directly support the
specification of local histories (i.e., monitoring the messages sent and received
by a single object). LARVA is developed by Colombo et al. [8]. The specification
language has an imperative flavor: users define a finite state machine to define
the allowed history (i.e., one has to ‘implement’ a regular expression themselves).
It is not possible to directly express context-free protocols. Data properties are
supported, though in a limited manner, by enriching the state machine with con-
ditions on method parameters or return values. It is not possible to specify a local

" Available in the ACM Digital Library with the title "Prototyping a tool environment
for run-time assertion checking in JML with communication histories", authored by
Frank S. de Boer, Stijn de Gouw and Jurgen Vinju

24 F.S. de Boer et al.

history of a single object. DeLine and Fahndrich [10] propose a statically check-
able typestate system for object-oriented programs. Typestate specifications of
protocols correspond to finite state machines (assertions are not considered in
their approach), thus for example a stack cannot be properly specified.

To the best of our knowledge, no other approach integrates protocol-oriented
properties into existing state-based assertion languages. The integration does not
involve an extension of the syntax and semantics of the assertion language itself.
As an important consequence, no change in the implementation of the state-
based assertion checker is needed, in contrast to the following works. Cheon and
Perumandla present in [6] an extension of the JML compiler with call sequence
assertions. Call sequence assertions are regular expressions (proper context-free
grammars cannot be handled) over method names and the data sent in calls
and returns is not considered. Protocol properties (call sequence assertions) are
handled separately from data properties, and as such are not integrated into the
general context of (data) assertions. The proposed extension to call sequence
assertions involves changing the existing JML-compiler (in particular, both the
syntax and the semantics of JML assertions are extended), whereas in our test
suite integrating with JML consists only of a simple pre-processing stage. Con-
sequently in our approach no change in the JML-compiler is needed, and new
versions of the JML-compiler are supported automatically, as long as they are
backwards compatible. Hurlin [12] presents an extension of the previous work to
handle multi-threading, which however is not supported by run-time verification
(instead it discusses static verification). As in the previous work, an integration
of protocol properties with assertions is not considered. Trentelman and Huis-
man [21] describe a new formalism extending JML assertions with Temporal
Logic operators. A translation for a subset of the Temporal Logic formulae back
to standard JML is described, and as future work they intend to integrate their
extension into the standard JML-grammar which requires a corresponding new
compiler.

Future Work. SAGA visualizes the offending history of a Java program that
violates the given attribute grammar in the form of a UML sequence diagram.
For industrial applications the histories (and consequently the corresponding
diagram) can get very large, even when projecting away irrelevant events with
the communication view. In such cases we found it is very useful to (further)
filter events from the diagram, focussing on a specific part of the diagram. For
instance, only showing all events in which a particular object was involved. The
sequence diagram editor used by SAGA provides preliminary support for filtering
using low-level UNIX system-based utilities grep and sed, but more high-level
solutions specifically tailored for sequence diagrams would be even more useful.
Furthermore, for debug purposes it would be convenient to visualize the current
contents of the heap.

Another line of future work concerns offline monitoring. Offline monitoring
serializes and stores the history of a running program in a file. This file is checked
later for correctness, possibly on a different computer. This allows companies to
enable monitoring production code deployed at clients with little performance

Run-Time Assertion Checking of Data- and Protocol-Oriented Properties 25

penalty: the histories can be checked on dedicated computers at the company
instead of at the client. A potential disadvantage of off line monitoring is that
it is not possible anymore to stop a running system directly after the attribute
grammar is violated (or inspect the content of the heap at that time).

Acknowledgements. We wish to express our gratitude to Behrooz Nobakht
for his help on the integration with the Java debugger and Jurgen Vinju for the
helpful discussions and major contributions to our Rascal tool.

References

10.

11.

12.

13.

14.

Allan, C., Avgustinov, P., Christensen, A.S., Hendren, L.J., Kuzins, S., Lhoték, O.,
de Moor, O., Sereni, D., Sittampalam, G., Tibble, J.: Adding trace matching with
free variables to aspectj. In: OOPSLA, pp. 345-364 (2005)

Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for runtime
verification. J. Log. Comput. 20(3), 651-674 (2010)

Burdy, L., Cheon, Y., Cok, D.R., Ernst, M.D., Kiniry, J.R., Leavens, G.T., Leino,
K.R.M., Poll, E.: An overview of JML tools and applications. International Journal
on Software Tools for Technology Transfer 7(3), 212-232 (2005)

Chalin, P., James, P.R., Karabotsos, G.: JML4: Towards an industrial grade IVE
for java and next generation research platform for JML. In: Shankar, N., Woodcock,
J. (eds.) VSTTE 2008. LNCS, vol. 5295, pp. 70-83. Springer, Heidelberg (2008)
Chen, F., Rosu, G.: MOP: an efficient and generic runtime verification framework.
In: OOPSLA, pp. 569-588 (2007)

Cheon, Y., Perumandla, A.: Specifying and checking method call sequences of java
programs. Software Quality Journal 15(1), 7-25 (2007)

Clarke, L.A., Rosenblum, D.S.: A historical perspective on runtime assertion check-
ing in software development. ACM SIGSOFT Software Engineering Notes 31(3),
25-37 (2006)

Colombo, C., Pace, G.J., Schneider, G.: Larva — safer monitoring of real-time Java
programs (tool paper). In: SEFM, pp. 33-37 (2009)

de Boer, F.S., de Gouw, S.: Run-time verification of black-box components
using behavioral specifications: An experience report on tool development. In:
Pasdreanu, C.S., Salaiin, G. (eds.) FACS 2012. LNCS, vol. 7684, pp. 128-133.
Springer, Heidelberg (2013)

DeLine, R., Fahndrich, M.: Typestates for objects. In: Odersky, M. (ed.) ECOOP
2004. LNCS, vol. 3086, pp. 465-490. Springer, Heidelberg (2004)

Hedin, G.: Incremental attribute evaluation with side-effects. In: Hammer, D. (ed.)
CCHSC 1988. LNCS, vol. 371, pp. 175-189. Springer, Heidelberg (1989)

Hurlin, C.: Specifying and checking protocols of multithreaded classes. In: ACM
Symposium on Applied Computing (SAC 2009), pp. 587-592. ACM Press (2009)
Klint, P., van der Storm, T., Vinju, J.: Rascal: a domain specific language for
source code analysis and manipulation. In: Walenstein, A., Schupp, S. (eds.) Pro-
ceedings of the IEEE International Working Conference on Source Code Analysis
and Manipulation (SCAM 2009), pp. 168-177 (2009)

Knuth, D.E.: Semantics of context-free languages. Mathematical Systems The-
ory 2(2), 127-145 (1968)

26

15.

16.

17.

18.

19.

20.

21.

F.S. de Boer et al.

Martin, M., Livshits, B., Lam, M.S.: Finding application errors and security flaws
using PQL: a program query language. In: OOPLSLA (2005)

Nobakht, B., Bonsangue, M.M., de Boer, F.S., de Gouw, S.: Monitoring method
call sequences using annotations. In: Barbosa, L.S., Lumpe, M. (eds.) FACS 2010.
LNCS, vol. 6921, pp. 53-70. Springer, Heidelberg (2012)

Parr, T.: The Definitive ANTLR Reference. Pragmatic Bookshelf (2007)

Parr, T.J., Quong, R.W.: Adding semantic and syntactic predicates to LL(k): pred-
LL(k). In: Fritzson, P.A. (ed.) CC 1994. LNCS, vol. 786, pp. 263-277. Springer,
Heidelberg (1994)

Pnueli, A., Zaks, A.: PSL model checking and run-time verification via testers. In:
FM, pp. 573-586 (2006)

Sipser, M.: Introduction to the theory of computation. PWS Publishing Company
(1997)

Trentelman, K., Huisman, M.: Extending JML specifications with temporal logic.
In: Kirchner, H., Ringeissen, C. (eds.) AMAST 2002. LNCS, vol. 2422, pp. 334-348.
Springer, Heidelberg (2002)

	Run-Time Assertion Checking of Data- and Protocol-Oriented Properties of Java Programs: An Industrial Case Study
	1 Introduction
	2 The Modeling Framework
	2.1 Communication View
	2.2 Grammars
	2.3 Discussion

	3 Tool Architecture
	3.1 Workflow
	3.2 Implementation

	4 Case Study
	4.1 Specification
	4.2 Experiment

	5 Conclusion
	References

