Skip to main content

Abstract

We designed microrobots in the form of autonomous and remotely guided microtubes. One of the challenges at small scales is the effective conversion of energy into mechanical force to overcome the high viscosity of the fluid at low Reynolds numbers. This can be achieved by integration of catalytic nano-materials and processes to decompose chemical fuels. However, up to now, mostly hydrogen peroxide has been employed as a fuel which renders the potential applications in biomedicine and in vivo experiments. Therefore, other sources of energy to achieve motion at the micro- nanoscale are highly sought-after. Here, we present different types of tubular micro- and nanorobots, alternative approaches to toxic fuels and also, steps towards the use of tubular microrobots as micro- and nanotools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kay, E.R., Leigh, D.A., Zerbetto, F.: Synthetic Molecular Motors and Mechanical Machines. Angew. Chem. Int. Ed. 46, 72–191 (2007)

    Article  Google Scholar 

  2. Vallee, R.B., Hook, P.: Molecular Motors: A Magnificent Machine. Nature 421, 701–702 (2003)

    Article  Google Scholar 

  3. Sen, A., Ibele, M., Hong, Y., Velegol, D.: Chemo and Phototactic Nano/Microbots. Faraday Discuss. 143, 15–27 (2009)

    Article  Google Scholar 

  4. Paxton, W.F., Kistler, K.C., Olmeda, C.C., Sen, A., St. Angelo, S.K., Cao, Y., Mal-louk, T.E., Lammert, P.E., Crespi, V.H.: Catalytic Nanomotors: Autonomous Movement of Striped Nanorods. J. Am. Chem. Soc. 126, 13424–13431 (2004)

    Article  Google Scholar 

  5. Mallouk, T.E., Sen, A.: Powering Nanorobots. Sci. Am. 300, 72–77 (2009)

    Article  Google Scholar 

  6. Ozin, G.A., Manners, I., Fournier-Bidoz, S., Arsenault, A.: Dream Nanomachines. Adv. Mater. 17, 3011–3018 (2005)

    Article  Google Scholar 

  7. Wang, J.: Can Man-Made Nanomachines Compete with Nature Biomotors? ACS Nano 3, 4 (2009)

    Article  Google Scholar 

  8. Mirkovic, T., Zacharia, N.S., Scholes, G.D., Ozin, G.A.: Fuel for Thought: Chemically Powered Nanomotors Out-Swim Nature’s Flagellated Bacteria. ACS Nano 4, 1782–1789 (2010)

    Article  Google Scholar 

  9. Wang, J., Manesh, K.M.: Motion Control at the Nanoscale. Small 6, 338–345 (2010)

    Article  Google Scholar 

  10. Laocharoensuk, R., Burdick, J., Wang, J.: Carbon-Nanotuble-Induced Acceleration of Catalytic Nanomotors. ACS Nano 2, 1069–1075 (2008)

    Article  Google Scholar 

  11. Kline, T.R., Paxton, W.F., Mallouk, T.E., Sen, A.: Catalytic Nanomotors: Remote-Controlled Autonomous Movement of Striped Metallic Nanorods. Angew. Chem. Int. Ed. 44, 744–746 (2005)

    Article  Google Scholar 

  12. Pumera, M.: Electrochemically powered self-propelled electrophoretic nanosubmarines. Nanoscale 2, 1643–1649 (2010)

    Article  Google Scholar 

  13. Solovev, A.A., Mei, Y.F., Urena, E.B., Huang, G., Schmidt, O.G.: Catalytic Microtubular Jet Engines Self-Propelled by Accumulated Gas Bubbles. Small 5, 1688–1692 (2009)

    Article  Google Scholar 

  14. Mei, Y.F., Huang, G.S., Solovev, A.A., Urena, E.B., Monch, I., Ding, F., Reindl, T., Fu, R.K.Y., Chu, P.K., Schmidt, O.G.: Versatile Approach for Integrative and Functionalized Tubes by Strain Engineering of Nanomembranes on Polymers. Adv. Mater. 20, 4085–4090 (2008)

    Article  Google Scholar 

  15. Mei, Y.F., Solovev, A.A., Sanchez, S., Schmidt, O.G.: Rolled-Up Nanotech on Polymers: from Basic Perception to Self-Propelled Catalytic Microengines. Chem. Soc. Rev. 40, 2109–2119 (2011)

    Article  Google Scholar 

  16. Harazim, S.M., Xi, W., Schmidt, C.K., Sanchez, S., Schmidt, O.G.: Fabrication and Applications of Large Arrays of Multifunctional Rolled-Up SiO/SiO2 Microtubes. J. Mater. Chem. 22, 2878–2884 (2012)

    Article  Google Scholar 

  17. Manesh, K.M., Cardona, M., Yuan, R., Clark, M., Kagan, D., Balasubramanian, S., Wang, J.: Template-Assisted Fabrication of Salt-Independent Catalytic Tubular Microengines. ACS Nano 4, 1799–1804 (2010)

    Article  Google Scholar 

  18. Solovev, A.A., Sanchez, S., Pumera, M., Mei, Y.F., Schmidt, O.G.: Magnetic Control of Tubular Catalytic Microbots for the Transport, Assembly, and Delivery of Micro-objects. Adv. Mater. 20, 2430–2435 (2010)

    Google Scholar 

  19. Sanchez, S., Solovev, A.A., Schulze, S., Schmidt, O.G.: Controlled Manipulation of Multiple Cells Using Catalytic Microbots. Chem. Commun. 47, 698–700 (2011)

    Article  Google Scholar 

  20. Sanchez, S., Ananth, A.N., Fomin, V.M., Viehrig, M., Schmidt, O.G.: Superfast Motion of Catalytic Microjet Engines at Physiological Temperature. J. Am. Chem. Soc. 133, 14860–14863 (2011)

    Article  Google Scholar 

  21. Solovev, A.A., Xi, W., Gracias, D.H., Harazim, S.M., Deneke, C., Sanchez, S., Schmidt, O.G.: Self-Propelled Nanotools. ACS Nano 6, 1751–1756 (2012)

    Article  Google Scholar 

  22. Xi, W., Solovev, A.A., Ananth, A.N., Gracias, D.H., Sanchez, S., Schmidt, O.G.: Rolled-Up Magnetic Microdrillers: Towards Remotely Controlled Minimally Invasive Surgery. Nanoscale 5, 1294–1297 (2013)

    Article  Google Scholar 

  23. Magdanz, V., Sanchez, S., Schmidt, O.G.: A Sperm Driven Micro-Bio-Robot. Adv. Mat. 25(45), 6581–6588 (2013)

    Article  Google Scholar 

  24. Bassik, N., Brafman, A., Zarafshar, A.M., Jamal, M., Luvsanjav, D., Selaru, F.M., Gracias, D.H.: Enzymatically Triggered Actuation of Miniaturized Tools. J. Am. Chem. Soc. 132, 16314–16317 (2010)

    Article  Google Scholar 

  25. Zhao, G., Sanchez, S., Schmidt, O.G., Pumera, M.: Micromotors with Built-In Compasses. Chem. Commun. 48, 10090–10092 (2012)

    Article  Google Scholar 

  26. Sanchez, S., Solovev, A.A., Harazim, S.M., Schmidt, O.G.: Microbots Swimming in the Flowing Streams of Microfluidic Channels. J. Am. Chem. Soc. 133, 701–703 (2011)

    Article  Google Scholar 

  27. Khalil, I.S.M., Magdanz, V., Sanchez, S., Schmidt, O.G., Abelmann, L., Misra, S.: Magnetic Control of Potential Microrobotic Drug Delivery Systems: Nanoparticles, Magnetotactic Bacteria and Self-Propelled Microjets. In: 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 5299–5302. IEEE Press, New York (2013)

    Google Scholar 

  28. Nelson, B.J., Kaliakatsos, I.K., Abbott, J.J.: Microrobots for Minimally Invasive Medicine. Annu. Rev. Biomed. Eng. 12, 55–85 (2010)

    Article  Google Scholar 

  29. Peyer, K.E., Zhang, L., Nelson, B.J.: Bio-Inspired Magnetic Swimming Microrobots for Biomedical Applications. Nanoscale 5, 1259–1272 (2013)

    Article  Google Scholar 

  30. Schmidt, O.G., Eberl, K.: Nanotechnology: Thin Solid Films Roll Up into Nanotubes. Nature 410, 168 (2001)

    Article  Google Scholar 

  31. Sanchez, S., Solovev, A.A., Harazim, S.M., Deneke, C., Mei, Y.F., Schmidt, O.G.: The Smallest Man-Made Jet Engine. Chem. Rec. 11, 367–370 (2011)

    Article  Google Scholar 

  32. Soler, L., Martínez-Cisneros, C., Swiersy, A., Sánchez, S., Schmidt, O.G.: Thermal activation of catalytic microjets in blood samples using microfluidic chips. Lab Chip 13, 4299–4303 (2013)

    Article  Google Scholar 

  33. Leong, T.G., Randall, C.L., Benson, B.R., Bassik, N., Stern, G.M., Gracias, D.H.: Tetherless thermobiochemically actuated microgrippers. Proc. Natl. Acad. Sci. U. S. A. 106, 703–708 (2009)

    Article  Google Scholar 

  34. Martel, S., Tremblay, C.C., Ngakeng, S., Langlois, G.: Controlled manipulation and actuation of micro-objects with magnetotactic bacteria. Appl. Phys. Lett. 89, 233904 (2006)

    Article  Google Scholar 

  35. Angelani, L., Di Leonardi, R., Ruocco, G.: Self-Starting Micromotors in a Bacterial Bath. Phys. Rev. Lett. 102, 048104 (2009)

    Google Scholar 

  36. Kim, D., Liu, A., Diller, E., Sitti, M.: Chemotactic steering of bacteria propelled microbeads. Biomed. Microdevices 14, 1009–1017 (2012)

    Article  Google Scholar 

  37. Steager, E.B., Sakar, M.S., Kim, D.H., Kumar, V., Pappas, G.J., Kim, M.J.: Electrokinetic and optical control of bacterial microrobots. J. Micromech. Microeng. 21, 035001 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sánchez, S., Xi, W., Solovev, A.A., Soler, L., Magdanz, V., Schmidt, O.G. (2014). Tubular Micro-nanorobots: Smart Design for Bio-related Applications. In: Paprotny, I., Bergbreiter, S. (eds) Small-Scale Robotics. From Nano-to-Millimeter-Sized Robotic Systems and Applications. ICRA 2013. Lecture Notes in Computer Science(), vol 8336. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55134-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55134-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-55133-8

  • Online ISBN: 978-3-642-55134-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics