Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8336))

  • 2514 Accesses

Abstract

Research on mobile millirobots has been ongoing for the last 20 years, but the few robots that have walked have done so at slow speeds on smooth silicon wafers. However, ants can move at speeds approaching 40 body lengths/second on surfaces from picnic tables to front lawns. What challenges do we still need to tackle for millirobots to achieve this incredible mobility? This chapter presents some of the mechanisms that have been designed and fabricated to enable robot mobility at the insect size scale. These mechanisms utilize new microfabrication processes to incorporate materials with widely varying moduli and functionality for more complexity in smaller packages. Results include a 4 mm jumping mechanism that can be launched over 30 cm straight up, an actuated jumping mechanism used as a catapult, and preliminary leg designs for a walking/running millirobot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Full, R.J., Tu, M.S.: Mechanics of a rapid running insect: two-, four- and six-legged locomotion. The Journal of Experimental Biology 156, 215–231 (1991)

    Google Scholar 

  2. Seidl, T., Wehner, R.: Walking on inclines: how do desert ants monitor slope and step length. Frontiers in Zoology 5(1), 8 (2008)

    Article  Google Scholar 

  3. Burrows, M.: Froghopper insects leap to new heights. Nature 424, 509 (2003)

    Article  Google Scholar 

  4. Dudek, D.M.: Passive mechanical properties of the exoskeleton simplify the control of rapid running in the cockroach, Blaberus discoidalis. PhD dissertation, University of California, Berkeley (2006)

    Google Scholar 

  5. Kubow, T., Full, R.: The role of the mechanical system in control: A hypothesis of self-stabilization in hexapedal runners. Philosophical Transactions of the Royal Society London B 354, 849–862 (1999)

    Article  Google Scholar 

  6. Spagna, J.C., Goldman, D.I., Lin, P.C., Koditschek, D.E., Full, R.J.: Distributed mechanical feedback in arthropods and robots simplifies control of rapid running on challenging terrain. Bioinspiration & Biomimetics 2, 9–18 (2007)

    Article  Google Scholar 

  7. Noh, M., Kim, S.W., An, S., Koh, J.S., Cho, K.J.: Flea-inspired catapult mechanism for miniature jumping robots. IEEE Transactions on Robotics 28(5), 1007–1018 (2012)

    Article  Google Scholar 

  8. Brown, I., Loeb, G.: A reductionist approach to creating and using neuromusculoskeletal models. In: Biomechanics and Neuro-Control of Posture and Movement, pp. 148–163. Springer, New York (2000)

    Chapter  Google Scholar 

  9. Saranli, U., Buehler, M., Koditschek, D.E.: Design, modeling and preliminary control of a compliant hexapod robot. In: IEEE International Conference on Robotics and Automation, San Francisco, CA (2000)

    Google Scholar 

  10. Saranli, U., Buehler, M., Koditschek, D.E.: RHex: a simple and highly mobile hexapod robot. International Journal of Robotics Research 20(7), 616–631 (2001)

    Article  Google Scholar 

  11. Cham, J.G., Bailey, S.A., Cutkosky, M.R.: Robust dynamic locomotion through feedforward-preflex interaction. In: ASME International Mechanical Engineering Congress and Expo (November 2000)

    Google Scholar 

  12. Yeh, R., Kruglick, E.J.J., Pister, K.S.J.: Surface-micromachined components for articulated microrobots. Journal of Microelectromechanical Systems 5(1), 10–17 (1996)

    Article  Google Scholar 

  13. Kladitis, P.E., Bright, V.M.: Prototype microrobots for micro-positioning and micro-unmanned vehicles. Sensors and Actuators A: Physical 80(2), 132–137 (2000)

    Article  Google Scholar 

  14. Hollar, S., Flynn, A.M., Bellew, C., Pister, K.S.J.: Solar powered 10 mg silicon robot. In: IEEE Micro Electro Mechanical Systems, pp. 706–711 (2003)

    Google Scholar 

  15. Hollar, S., Flynn, A.M., Bergbreiter, S., Pister, K.S.J.: Robot leg motion in a Planarized-SOI 2 poly process, Hilton Head, SC (June 2002)

    Google Scholar 

  16. Petersen, K.E.: Silicon as a mechanical material. Proceedings of the IEEE 70(5), 420–457 (1982)

    Article  Google Scholar 

  17. Ebefors, T., Mattsson, J.U., Kalvesten, E., Stemme, G.: A walking silicon microrobot. In: International Conference on Solid-State Sensors, Actuators, and Microsystes (Transducers), Sendai, Japan, pp. 1202–1205 (June 1999)

    Google Scholar 

  18. Ebefors, T., Ulfstedt-Mattsson, J., Kalvesten, E., Stemme, G.: 3D micromachined devices based on polyimide joint technology. In: Conference on Devices and Process Technologies for MEMS and Microelectronics, SPIE, Gold Coast, Australia, vol. 3892, pp. 118–132 (October 1999)

    Google Scholar 

  19. Erdem, E.Y., Chen, Y.M., Mohebbi, M., Suh, J.W., Kovacs, G.T.A., Darling, R.B., Bohringer, K.F.: Thermally actuated omnidirectional walking microrobot. Journal of Microelectromechanical Systems 19(3), 433–442 (2010)

    Article  Google Scholar 

  20. Wood, R.J.: The first takeoff of a biologically inspired at-scale robotic insect. IEEE Transactions on Robotics 24(2), 341–347 (2008)

    Article  Google Scholar 

  21. Schneider, F., Fellner, T., Wilde, J., Wallrabe, U.: Mechanical properties of silicones for MEMS. Journal of Micromechanics and Microengineering 18(6), 065008 (2008)

    Google Scholar 

  22. Xia, Y., Whitesides, G.M.: Soft lithography. Annual Review of Materials Science 28(1), 153–184 (1998)

    Article  Google Scholar 

  23. Suzuki, Y., Tai, Y.C.: Micromachined high-aspect-ratio parylene spring and its application to low-frequency accelerometers. Journal of Microelectromechanical Systems 15(5), 1364–1370 (2006)

    Article  Google Scholar 

  24. Wood, R.J., Avadhanula, S., Sahai, R., Steltz, E., Fearing, R.S.: Microrobot design using fiber reinforced composites. Journal of Mechanical Design 130(5), 052304 (2008)

    Google Scholar 

  25. Gerratt, A.P., Bergbreiter, S.: Incorporating compliant elastomers for jumping locomotion in microrobots. Smart Materials and Structures 22(1), 014010 (2013)

    Google Scholar 

  26. Lee, J.N., Park, C., Whitesides, G.M.: Solvent compatibility of poly(dimethylsiloxane)-sased microfluidic devices. Analytical Chemistry 75(23), 6544–6554 (2003)

    Article  Google Scholar 

  27. Gerratt, A.P., Penskiy, I., Bergbreiter, S.: In situ characterization of PDMS in SOI-MEMS. Journal of Micromechanics and Microengineering 23(4), 045003 (2013)

    Google Scholar 

  28. Bergbreiter, S.: Effective and efficient locomotion for millimeter-sized microrobots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, pp. 4030–4035 (September 2008)

    Google Scholar 

  29. Churaman, W.A., Gerratt, A.P., Bergbreiter, S.: First leaps toward jumping microrobots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, pp. 1680–1686 (September 2011)

    Google Scholar 

  30. Burdick, J., Fiorini, P.: Minimalist jumping robots for celestial exploration. The International Journal of Robotics Research 22(78), 653–674 (2003)

    Article  Google Scholar 

  31. Braunig, P., Burrows, M.: Neurons controlling jumping in froghopper insects. The Journal of Comparative Neurology 507(1), 1065–1075 (2008)

    Article  Google Scholar 

  32. Burrows, M.: Morphology and action of the hind leg joints controlling jumping in froghopper insect. Journal of Experimental Biology 209, 4622–4637 (2006)

    Article  Google Scholar 

  33. Maloney, J.M., Schreiber, D.S., DeVoe, D.L.: Large-force electrothermal linear micromotors. Journal of Micromechanics and Microengineering 14, 226–234 (2004)

    Article  Google Scholar 

  34. Howell, L.L.: Compliant Mechanisms. John Wiley & Sons, Inc., New York (2001)

    Google Scholar 

  35. Vogtmann, D., Gupta, S.K., Bergbreiter, S.: Characterization and modeling of elastomeric joints in miniature compliant mechanisms. ASME Journal of Mechanisms and Robotics 5(4), 41017 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bergbreiter, S., Gerratt, A.P., Vogtmann, D. (2014). Progress Toward Mobility in Microfabricated Millirobots. In: Paprotny, I., Bergbreiter, S. (eds) Small-Scale Robotics. From Nano-to-Millimeter-Sized Robotic Systems and Applications. ICRA 2013. Lecture Notes in Computer Science(), vol 8336. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55134-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55134-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-55133-8

  • Online ISBN: 978-3-642-55134-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics