Abstract
We investigate parallel algorithms for the solution of the Navier–Stokes equations in space-time. For periodic solutions, the discretized problem can be written as a large non-linear system of equations. This system of equations is solved by a Newton iteration. The Newton correction is computed using a preconditioned GMRES solver. The parallel performance of the algorithm is illustrated.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arbenz, P., Hiltebrand, A., Obrist, D.: A parallel space-time finite difference solver for periodic solutions of the shallow-water equation. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2011, Part II. LNCS, vol. 7204, pp. 302–312. Springer, Heidelberg (2012)
Christlieb, A.J., Haynes, R.D., Ong, B.W.: A parallel space-time algorithm. SIAM J. Sci. Comput. 34(5), C233–C248 (2012)
Henniger, R., Obrist, D., Kleiser, L.: High-order accurate solution of the incompressible Navier-Stokes equations on massively parallel computers. J. Comput. Phys. 229(10), 3543–3572 (2010)
Heroux, M.A., Bartlett, R.A., Howle, V.E., Hoekstra, R.J., Hu, J.J., Kolda, T.G., Lehoucq, R.B., Long, K.R., Pawlowski, R.P., Phipps, E.T., Salinger, A.G., Thornquist, H.K., Tuminaro, R.S., Willenbring, J.M., Williams, A., Stanley, K.S.: An overview of the Trilinos project. ACM Trans. Math. Softw. 31(3), 397–423 (2005)
Hupp, D.: A parallel space-time solver for Navier-Stokes. Master thesis, ETH Zurich, Curriculum Computational Science and Engineering. http://dx.doi.org/10.3929/ethz-a-009979902, May 2013
LeVeque, R.J.: Finite Difference Methods for Ordinary and Partial Differential Equations. SIAM, Philadelphia (2007)
Lions, J.-L., Maday, Y., Turinici, G.: A “parareal” in time discretization of PDE’s. C. R. Math. Acad. Sci. Paris 332(7), 661–668 (2001)
Mohd-Yusof, J.: Combined immersed-boundary/B-spline methods for simulations of flow in complex geometries. Annual Research Briefs, pp. 317–327. NASA Ames/Stanford Univ., Center for Turbulence Research. http://ctr.stanford.edu/ResBriefs97/myusof.pdf (1997)
Obrist, D., Henniger, R., Arbenz, P.: Parallelization of the time integration for time-periodic flow problems. PAMM 10(1), 567–568 (2010)
Pawlowski, R.P., Shadid, J.N., Simonis, J.P., Walker, H.F.: Globalization techniques for Newton-Krylov methods and applications to the fully coupled solution of the Navier-Stokes equations. SIAM Rev. 48(4), 700–721 (2006)
Saad, Y.: IIUT: a dual threshold incomplete LU factorization. Numer. Linear Algebra Appl. 1(4), 387–402 (1994)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Arbenz, P., Hupp, D., Obrist, D. (2014). A Parallel Solver for the Time-Periodic Navier–Stokes Equations. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2013. Lecture Notes in Computer Science(), vol 8385. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55195-6_27
Download citation
DOI: https://doi.org/10.1007/978-3-642-55195-6_27
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-55194-9
Online ISBN: 978-3-642-55195-6
eBook Packages: Computer ScienceComputer Science (R0)