Abstract
We propose an iterative improvement method for an enclosure of the solution set of a system of interval linear equations. The method sequentially cuts off (shaves) parts of a given enclosure that contain no solution, yielding thus tighter enclosures. Since shaving can be done independently in the coordinates, the procedure is easily parallelized. Our approach is convenient for problems with wide input intervals, where traditional methods give poor enclosures. Finally, we present a limited computational study.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Beaumont, O.: Solving interval linear systems with linear programming techniques. Linear Algebra Appl. 281(1–3), 293–309 (1998)
Fiedler, M., Nedoma, J., Ramík, J., Rohn, J., Zimmermann, K.: Linear Optimization Problems with Inexact Data. Springer, New York (2006)
Goldsztejn, A., Goualard, F.: Box consistency through adaptive shaving. In: Proceedings of the 2010 ACM Symposium on Applied Computing, SAC ’10, pp. 2049–2054. ACM, New York (2010), http://doi.acm.org/10.1145/1774088.1774519
Hladík, M.: A new operator and method for solving interval linear equations (2013), http://arxiv.org/abs/1306.6739
Hladík, M.: Weak and strong solvability of interval linear systems of equations and inequalities. Linear Algebra Appl. 438(11), 4156–4165 (2013)
Kreinovich, V., Lakeyev, A., Rohn, J., Kahl, P.: Computational Complexity and Feasibility of Data Processing and Interval Computations. Kluwer, Dordrecht (1998)
Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. SIAM, Philadelphia (2009)
Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University Press, Cambridge (1990)
Neumaier, A.: A simple derivation of the hansen-bliek-rohn-ning-kearfott enclosure for linear interval equations. Reliab. Comput. 5(2), 131–136 (1999)
Popova, E.D.: Webcomputing service framework. Int. J. Inf. Theor. Appl. 13(3), 246–254 (2006)
Popova, E.D., Hladík, M.: Outer enclosures to the parametric ae solution set. Soft Comput. 17(8), 1403–1414 (2013)
Popova, E.D., Krämer, W.: Inner and outer bounds for the solution set of parametric linear systems. J. Comput. Appl. Math. 199(2), 310–316 (2007)
Rump, S.M.: Intlab - interval laboratory. In: Csendes, T. (ed.) Developments in Reliable Computing, pp. 77–104. Kluwer Academic Publishers, Dordrecht (1999). http://www.ti3.tu-harburg.de/rump/
Rump, S.M.: Verification methods: rigorous results using floating-point arithmetic. Acta Numer. 19, 287–449 (2010)
Shary, S.P.: A new technique in systems analysis under interval uncertainty and ambiguity. Reliab. Comput. 8(5), 321–418 (2002)
Trombettoni, G., Papegay, Y., Chabert, G., Pourtallier, O.: A box-consistency contractor based on extremal functions. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 491–498. Springer, Heidelberg (2010). http://dx.doi.org/10.1007/978-3-642-15396-9_39
Acknowledgments
M. Hladík was supported by CE-ITI (GAP202/12/G061) of the Czech Science Foundation. J. Horáček was supported by the Czech Science Foundation Grant P402-13-10660S, and by the Charles University grant GAUK N0. 712912.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hladík, M., Horáček, J. (2014). A Shaving Method for Interval Linear Systems of Equations. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2013. Lecture Notes in Computer Science(), vol 8385. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55195-6_54
Download citation
DOI: https://doi.org/10.1007/978-3-642-55195-6_54
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-55194-9
Online ISBN: 978-3-642-55195-6
eBook Packages: Computer ScienceComputer Science (R0)