Skip to main content

Subsquares Approach – A Simple Scheme for Solving Overdetermined Interval Linear Systems

  • Conference paper
  • First Online:
Parallel Processing and Applied Mathematics (PPAM 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8385))

  • 1364 Accesses

Abstract

In this work we present a new simple but efficient scheme – Subsquares approach – for development of algorithms for enclosing the solution set of overdetermined interval linear systems. We are going to show two algorithms based on this scheme and discuss their features. We start with a simple algorithm as a motivation, then we continue with an improved algorithm. Both algorithms can be easily parallelized. The features of both algorithms will be discussed and numerically tested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hansen, E.R., Walster, G.W.: Solving overdetermined systems of interval linear equations. Reliable Comput. 12(3), 239–243 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Hladík, M., Daney, D., Tsigaridas, E.P.: An algorithm for addressing the real interval eigenvalue problem. J. Comput. Appl. Math. 235(8), 2715–2730 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Horáček, J., Hladík, M.: Computing enclosures of overdetermined interval linear systems. Submitted to Reliable Computing, text available at http://arxiv.org/abs/1304.4738 (2013)

  4. Kreinovich, V., Lakeyev, A., Rohn, J., Kahl, P.: Computational Complexity and Feasibility of Data Processing and Interval Computations. Kluwer, Dordrecht (1998)

    Book  MATH  Google Scholar 

  5. Moore, R.E., Kearfott, R.B., Cloud, M.: Introduction to Interval Analysis. Society for Industrial Mathematics, Philadelphia (2009)

    Book  MATH  Google Scholar 

  6. Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  7. Popova, E.D.: Improved solution enclosures for over- and underdetermined interval linear systems. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) LSSC 2005. LNCS, vol. 3743, pp. 305–312. Springer, Heidelberg (2006)

    Google Scholar 

  8. Rohn, J.: Enclosing solutions of overdetermined systems of linear interval equations. Reliable Comput. 2(2), 167–171 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  9. Rohn, J.: VERSOFT: Verification software in MATLAB / INTLAB, version 10. http://uivtx.cs.cas.cz/~rohn/matlab/ (2009)

  10. Rohn, J., Kreinovich, V.: Computing exact componentwise bounds on solutions of lineary systems with interval data is np-hard. SIAM J. Matrix Anal. Appl. 16(2), 415–420 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. Rump, S.M.: INTLAB - INTerval LABoratory. In: Csendes, T. (ed.), Developments in Reliable Computing, pp. 77–104. Kluwer Academic Publishers, Dordrecht (1999) http://www.ti3.tu-harburg.de/rump/

Download references

Acknowledgement

Our research was supported by the grant GAČR P402/13/ 10660S. Jaroslav Horáček was partially supported by the Grant Agency of the Charles University (GAUK) grant no. 712912 and by GAUK no. SVV-2013–267313. Jaroslav Horáček would like to thank to Jezci mix-research group for general support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslav Horáček .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Horáček, J., Hladík, M. (2014). Subsquares Approach – A Simple Scheme for Solving Overdetermined Interval Linear Systems. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2013. Lecture Notes in Computer Science(), vol 8385. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55195-6_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55195-6_58

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-55194-9

  • Online ISBN: 978-3-642-55195-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics