Skip to main content

The Use of GPGPU in Continuous and Discrete Models of Crowd Dynamics

  • Conference paper
  • First Online:
Parallel Processing and Applied Mathematics (PPAM 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8385))

Abstract

The aim of the study is twofold: firstly to compare the possibilities of using GPGPU (General-Purpose Computing on Graphics Processing Units) in continuous and discrete crowd dynamics simulation, secondly to draw conclusions on the applicability of GPUs in engines of professional crowd simulations. For this purpose the authors have implemented two models of pedestrian dynamics: continuous - Social Forces model and discrete, Cellular Automata based - Social Distances model. The presented simulations refer to outdoor, large area pedestrian movement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This model was originally designed as a hybrid: cellular automaton with a component of force, however in the study it is implemented exclusively as floor field, cellular automaton based model [23]

References

  1. Bilotta, G., Rustico, E., Hérault, A.: Porting and optimizing magflow on cuda. Ann. Geophys. 54(5), 580–591 (2011)

    Google Scholar 

  2. Blecic, I., Cecchini, A., Trunfio, G.A.: Cellular automata simulation of urban dynamics through gpgpu. J. Supercomputing 65, 614–629 (2013)

    Article  Google Scholar 

  3. Burstedde, C., Klauck, K., Schadschneider, A., Zittartz, J.: Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Phys. A Stat. Mech. App. 295(3–4), 507–525 (2001)

    Article  MATH  Google Scholar 

  4. Courty, N., Musse, S.R.: Simulation of large crowds in emergency situations including gaseous phenomena. In: Proceedings of the Computer Graphics International 2005, CGI ’05, pp. 206–212. IEEE Computer Society, Washington, DC (2005)

    Google Scholar 

  5. Demeulemeester, A., Hollemeersch, C.-F., Mees, P., Pieters, B., Lambert, P., Van de Walle, R.: Hybrid path planning for massive crowd simulation on the GPU. In: Allbeck, J.M., Faloutsos, P. (eds.) MIG 2011. LNCS, vol. 7060, pp. 304–315. Springer, Heidelberg (2011)

    Google Scholar 

  6. Dudek-Dyduch, E., Kucharska, E.: Learning method for co-operation. In: Jędrzejowicz, P., Nguyen, N.T., Hoang, K. (eds.) ICCCI 2011, Part II. LNCS, vol. 6923, pp. 290–300. Springer, Heidelberg (2011)

    Google Scholar 

  7. Gwizdałła, T.M.: The dynamics of disproportionality index for cellular automata based sociophysical models. In: Sirakoulis, C.G., Bandini, S. (eds.) ACRI 2012. LNCS, vol. 7495, pp. 91–100. Springer, Heidelberg (2012)

    Google Scholar 

  8. Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51, 4282–4286 (1995)

    Article  Google Scholar 

  9. Joselli, M., Passos, E.B., Zamith, M., Clua, E., Montenegro, A., Feijo, B.: A neighborhood grid data structure for massive 3D crowd simulation on GPU. In: Brazilian Symposium on Games and Digital Entertainment, pp. 121–131 (2009)

    Google Scholar 

  10. Karmakham, T., Richmond, P., Romano, D.M.: Agent-based large scale simulation of pedestrians with adaptive realistic navigation vector fields. In: TPCG’10, pp. 67–74 (2010)

    Google Scholar 

  11. Mróz, H., Wąs, J.: Discrete vs continuous approach in crowd dynamics modelling using GPU computing. J. Cybern. Syst. 45, 25–38 (2014)

    Article  Google Scholar 

  12. NVIDIA. NVIDIA CUDA C Best Practices Guide (2010)

    Google Scholar 

  13. OpenCL. OpenCL - the open standard for parallel programming of heterogeneous systems

    Google Scholar 

  14. Peng, Ch., Park, S.I., Cao, Y., Tian, J.: A real-time system for crowd rendering: parallel LOD and texture-preserving approach on GPU. In: Allbeck, J.M., Faloutsos, P. (eds.) MIG 2011. LNCS, vol. 7060, pp. 27–38. Springer, Heidelberg (2011)

    Google Scholar 

  15. Płaczek, B.: A traffic model based on fuzzy cellular automata. J. Cell. Automata 8, 261–282 (2013). (ISSN: 1557–5969)

    MATH  Google Scholar 

  16. Richmond, P., Romano, D.M.: Agent based GPU, a real-time 3D simulation and interactive visualisation framework for massive agent based modelling on the GPU. In: Proceedings of International Workshop on Supervisualisation 2008 (IWSV08), June 2008

    Google Scholar 

  17. Rumpf, M., Strzodka, R.: Graphics processor units: new prospects for parallel computing. Numer. Solut. Partial. Differ. Equ. Parallel Comput. 51, 89–132 (2006)

    Article  Google Scholar 

  18. Rybacki, S., Himmelspach, J., Uhrmacher, A.M.: Experiments with single core, multi-core, and GPU based computation of cellular automata. In: Conference on Advances in System Simulation, pp. 62–67 (2009)

    Google Scholar 

  19. Spataro, W., Rongo, R., Lupiano, V., Avolio, M.V., D’Ambrosio, D., Trunfio, G.A.: High detailed lava flows hazard maps by a cellular automata approach. In: Pina, N., Kacprzyk, J., Filipe, J. (eds.) Simulation & Modeling Methodologies, Technologies & Appli. AISC, vol. 197, pp. 85–100. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  20. Topa, P., Młocek, P.: GPGPU implementation of cellular automata model of water flow. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2011, Part I. LNCS, vol. 7203, pp. 630–639. Springer, Heidelberg (2012)

    Google Scholar 

  21. Vigueras, G., Orduña, J.M., Lozano, M.: A gpu-based multi-agent system for real-time simulations. In: Demazeau, Y., Dignum, F., Corchado, J.M., Pérez, J.B. (eds.) Advances in PAAMS. AISC, vol. 70, pp. 15–24. Springer, Heidelberg (2010)

    Google Scholar 

  22. Wąs, J., Gudowski, B., Matuszyk, P.J.: Social distances model of pedestrian dynamics. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 492–501. Springer, Heidelberg (2006)

    Google Scholar 

  23. Wąs, J., Lubaś, R., Myśliwiec, W.: Proxemics in discrete simulation of evacuation. In: Sirakoulis, ChG, Bandini, S. (eds.) ACRI 2012. LNCS, vol. 7495, pp. 768–775. Springer, Heidelberg (2012)

    Google Scholar 

  24. Wąs, J., Myśliwiec, W., Lubaś, R.: Towards realistic modeling of crowd compressibility. In: Peacock, R.D., Kuligowski, E.D., Averill, J.D. (eds.) Pedestrian and Evacuation Dynamics, pp. 527–534. Springer, US (2011)

    Google Scholar 

Download references

Acknowledgment

This research is partially supported by FP7 project SOCIONICAL, No 231288.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarosław Wąs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mróz, H., Wąs, J., Topa, P. (2014). The Use of GPGPU in Continuous and Discrete Models of Crowd Dynamics. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2013. Lecture Notes in Computer Science(), vol 8385. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55195-6_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55195-6_64

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-55194-9

  • Online ISBN: 978-3-642-55195-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics