Abstract
The field of pharmaceutical modelling has, in recent years, benefited from using probabilistic methods based on cellular automata, which seek to overcome some of the limitations of differential equation based models. By modelling discrete structural element interactions instead, these are able to provide data quality adequate for the early design phases in drug modelling. In relevant literature, both synchronous (CA) and asynchronous (ACA) types of automata have been used, without analysing their comparative impact on the model outputs. In this paper, we compare several variations of probabilistic CA and ACA update algorithms for building models of complex systems used in controlled drug delivery, analysing the advantages and disadvantages related to different modelling scenarios. Choosing the appropriate update mechanism, besides having an impact on the perceived realism of the simulation, also has practical benefits on the applicability of different model parallelisation algorithms and their performance when used in large-scale simulation contexts.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Haddish-Berhane, N., Jeong, S.H., Haghighi, K., Park, K.: Modeling film-coat non-uniformity in polymer coated pellets: a stochastic approach. Int. J. Pharm. 323(1–2), 64–71 (2006)
Kaunisto, E., Marucci, M., Borgquist, P., Axelsson, A.: Mechanistic modelling of drug release from polymer-coated and swelling and dissolving polymer matrix systems. Int. J. Pharm. 418(1), 54–77 (2011)
Siepmann, J., Siepmann, F.: Mathematical modeling of drug delivery. Int. J. Pharm. 364(2), 328–343 (2008)
Barat, A., Crane, M., Ruskin, H.J.: Quantitative multi-agent models for simulating protein release from PLGA bioerodible nano- and microspheres. J. Pharm. Biomed. Anal. 48(2), 361–368 (2008)
Göpferich, A.: Bioerodible implants with programmable drug release. J. Controlled Release 44(2–3), 271–281 (1997)
Laaksonen, H., Hirvonen, J., Laaksonen, T.: Cellular automata model for swelling-controlled drug release. Int. J. Pharm. 380(1–2), 25–32 (2009)
Bandman, O.: Synchronous versus asynchronous cellular automata for simulating nano-systems kinetics. Bull. Novosib. Comput. Cent. Ser. Comput. Sci. 25, 1–12 (2006)
Alba, E., Giacobini, M., Tomassini, M., Romero, S.: Comparing synchronous and asynchronous cellular genetic algorithms. In: Merelo Guervós, J.J., Adamidis, P.A., Beyer, H.-G., Schwefel, H.-P., Fernández-Villacañas, J.L. (eds.) PPSN VII. LNCS, vol. 2439, pp. 601–610. Springer, Heidelberg (2002)
Kalgin, K.V.: Parallel simulation of asynchronous cellular automata evolution. Bull. Novosib. Comput. Cent. Ser. Comput. Sci. 27, 55–62 (2008)
Bezbradica, M., Ruskin, H.J., Crane, M.: Modelling drug coatings: a parallel cellular automata model of ethylcellulose-coated microspheres. In: Proceedings of the International Conference on Bioscience, Biochemistry and Bioinformatics (ICBBB 2011), vol. 5, pp. 419–424 (2011)
Bandini, S., Bonomi, A., Vizzari, G.: What do we mean by asynchronous CA? A reflection on types and effects of asynchronicity. In: Bandini, S., Manzoni, S., Umeo, H., Vizzari, G. (eds.) ACRI 2010. LNCS, vol. 6350, pp. 385–394. Springer, Heidelberg (2010)
Burstedde, C., Klauck, K., Schadschneider, S., Zittartz, J.: Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Physica A 295(3–4), 507–525 (2001)
Xiao, X., Shao, S., Ding, Y., Huang, Z., Chen, X., Chou, K.C.: Using cellular automata to generate image representation for biological sequences. Amino Acids 28, 29–35 (2005)
Baetens, J.M., der Weeën, P.V., Baets, B.D.: Effect of asynchronous updating on the stability of cellular automata. Chaos, Soliton. Fract. 45(4), 383–394 (2012)
Schoenfisch, B., de Roos, A.: Synchronous and asynchronous updating in cellular automata. Biosystems 51(3), 123–143 (1999)
Cornforth, D., Green, D.G., Newth, D.: Ordered asynchronous processes in multi-agent systems. Physica D 204(1–2), 70–82 (2005)
Matsumoto, M., Nishimura, T.: Mersenne Twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul. 8, 3–30 (1998)
Bandman, O.: Parallel simulation of asynchronous cellular automata evolution. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 41–47. Springer, Heidelberg (2006)
Thakur, R., Gropp, W.D., Toonen, B.: Minimizing synchronization overhead in the implementation of MPI one-sided communication. In: Kranzlmüller, D., Kacsuk, P., Dongarra, J. (eds.) EuroPVM/MPI 2004. LNCS, vol. 3241, pp. 57–67. Springer, Heidelberg (2004)
Toffoli, T., Margolus, N.: Cellular Automata Machines: A New Environment for Modeling. MIT Press, Cambridge (1987)
Bezbradica, M., Crane, M., Ruskin, H.J.: Parallelisation strategies for large scale cellular automata frameworks in pharmaceutical modelling. In: 2012 International Conference on High Performance Computing and Simulation (HPCS), pp. 223–230 (2012)
Moore, J.W., Flanner, H.H.: Mathematical comparison of curves with an emphasis on in-vitro dissolution profiles. Pharm. Technol. 20(6), 64–74 (1996)
Fatès, N., Thierry, E., Morvan, M., Schabanel, N.: Fully asynchronous behavior of double-quiescent elementary cellular automata. Theoret. Comput. Sci. 362(1–3), 1–16 (2006)
Acknowledgments
Financial support from the ERA-Net Complexity Project, P07217, is warmly acknowledged. The parallel simulations discussed in this paper were performed on computational resources provided by Sci-Sym, DCU, and by the Irish Centre for High-End Computing.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bezbradica, M., Ruskin, H.J., Crane, M. (2014). Probabilistic Pharmaceutical Modelling: A Comparison Between Synchronous and Asynchronous Cellular Automata. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2013. Lecture Notes in Computer Science(), vol 8385. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55195-6_66
Download citation
DOI: https://doi.org/10.1007/978-3-642-55195-6_66
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-55194-9
Online ISBN: 978-3-642-55195-6
eBook Packages: Computer ScienceComputer Science (R0)