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Abstract. The field of pharmaceutical modelling has, in recent years,
benefited from using probabilistic methods based on cellular automata,
which seek to overcome some of the limitations of differential equa-
tion based models. By modelling discrete structural element interactions
instead, these are able to provide data quality adequate for the early
design phases in drug modelling. In relevant literature, both synchro-
nous (CA) and asynchronous (ACA) types of automata have been used,
without analysing their comparative impact on the model outputs. In
this paper, we compare several variations of probabilistic CA and ACA
update algorithms for building models of complex systems used in con-
trolled drug delivery, analysing the advantages and disadvantages related
to different modelling scenarios. Choosing the appropriate update mech-
anism, besides having an impact on the perceived realism of the simu-
lation, also has practical benefits on the applicability of different model
parallelisation algorithms and their performance when used in large-scale
simulation contexts.
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1 Introduction

Probabilistic models based on Monte Carlo and CA frameworks have emerged
in recent years as a viable response to the modelling needs imposed by design
requirements of novel, more complex, drug delivery systems (DDS) [1].

Unlike traditional, differential equation based models, [2,3], CA attempt to
recreate system-level behaviour by in silico simulations of individual interactions
within the modelled device. This fits naturally with the early stages of the design
process, in which global physico-chemical behaviours of DDS are investigated.
By providing a low-cost alternative to lengthy, and potentially expensive, in vitro
experiments, probabilistic computational modelling becomes an integral part of
the drug design process. Nevertheless, uncertainties are inherent in this approach
to modelling physical phenomena and parameters can multiply rapidly, due to
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the many different physical interactions within the model, so good understanding
of model design choices is crucial.

In research papers covering the application of CA to the field, both synchro-
nous and asynchronous update methods have been used [3—6], without going into
deeper analysis of pros and cons of each. Choosing the algorithm for iterating
through the cellular matrix and the order of application of the local rules affects
how temporal realism of the physical process is represented. As DDS is biologi-
cal in nature, chaotic or random updates might represent the system dynamics
better than synchronous, “all-at-once”, changes. On the other hand, as size and
complexity of the models grows, the need for efficient parallelisation of model
space restricts the application of the asynchronous methods due to performance
reasons [7]. Therefore, it is of importance to understand the effects of synchronic-
ity and asynchronicity to the model outputs, in order to be able to make optimal
choices during model development. The transition of CA to ACA in general has
been investigated in literature in a number of modelling contexts [7-9].

In this paper we compare behavioural characteristics, model outputs and
performance for different synchronous and asynchronous CA update mecha-
nisms in the context of probabilistic models used in controlled drug delivery
and their parallel implementation, where differential equations are not applica-
ble due to inherent unknowns in the parameter space. Finally, we analyse the
results obtained by running the resulting models for a specific case of coated drug
bead formulations [10].

In what follows, Sect. 2 presents the design methodology used for developing
the CA rule sets, along with comparison of different CA and ACA update mech-
anisms when used in the context of the model and gives a theoretical analysis
of their properties and variations in parallel and sequential implementations.
Section 3 describes the developed model, with analysis of obtained results in
Sect. 4, followed by the final discussion (Sect. 5).

2 CA and ACA Modelling

2.1 Design Methodology

As for any model build, the first stage involves transfer of domain knowledge of
structural and behavioural characteristics of the DDS to the CA model. There
are several distinct DDS characteristic categories to be considered:

e The shape and geometry of the system (slab, cylindrical or spherical) - cap-
tured in the shape and size of the model cellular matrix;

e Polymer composition of the device defined by states of the matrix cells;

e Polymer physico-chemical interaction mechanisms (laws) - described by char-
acteristic behaviours that occur inside the DDS;

e Drug loading and initial dispersion within the device;

e Influence of the dissolution environment on polymer behaviour.
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The models thus obtained, with the above characteristics, are classified as
kinetic CA or ACA models [11]. Based on the way we choose to represent the
physical phenomena modelled, we can adopt rules, either deterministic or prob-
abilistic, (or a combination of both) affecting individual cell behaviour and the
surrounding neighbourhood.

Although it is common for various families of CA update mechanisms to oper-
ate under periodic boundary conditions [12,13], pharmaceutical models benefit
from using the fixed equivalent, as drug movement across the matrix boundaries
is used as a direct method for calculating release rates. To satisfy the condi-
tion that the models need to mimic the non-homogeneousness of the physical
device, with exact distributions of polymer and drug properties not available
from experimental data, the model establishes the initial cell states using sto-
chastic distributions within the known device geometry. Therefore, various direct
Monte Carlo algorithms provide a natural solution to the initial condition prob-
lem, by establishing a random starting state for each simulation run.

2.2 Update Methods

Crucially, a good description of the model dynamics, i.e. the closest qualita-
tive match to the behaviour of the pharmaceutical system modelled, relies on
choosing the appropriate update method of the cellular automaton itself. This
is addressed here, with particular emphasis on the correctness of the update
rules as we consider several standard synchronous and asynchronous CA update
methods [11,14,15].

Mathematically, the principal features of the 3-dimensional DDS models can
be represented as a cellular automaton by a tuple representation, as given by:

ACA = {G,A,U,6, F} (1)

where G denotes a set of cell coordinates (the model matrix in our meta model).
In the case of a 3D system:

G=27={(i,5,k) [ 1<i<N,,1<j<N,1<k<N,} (2)

A is the model alphabet - a finite set of possible cell states, (aggregate poly-
mer states in the conceptual model), and U denotes the cell neighbourhood
(including cell itself). Then A(U(xz), t) denotes the state of a neighbourhood of
cells U around a given cell z at a moment in time ¢. The behaviour of the system
is described by a set of elementary transition rules for the conceptual model, F,
where these are applied to the states of a neighbourhood of cells U. For the
sequential case of synchronous updates, the general form of the rules (Fs) can
be written as following;:

Fs ={f(x) : A(U(x),t) — A(U(x),t +1) [z € G} 3)

Finally, © denotes the CA/ACA update order function, applied to G and A
in order to advance the global model state. As a basis for © we investigated the
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application of several random and ordered asynchronous update methods, (see
e.g. [16]) and compared these to the well-used synchronous method.

We implement the different update forms as modifications of the basic syn-
chronous CA two-phase update algorithm of the main matrix G. The
first ACA update method investigated is the random order algorithm which
involves updating cells of G in a random order which is changed every time a
full cell sweep is finished. All cells are updated in each time step of the sim-
ulation. The random cyclic algorithm is a variation of the random order
algorithm, with the difference that a single random permutation of G is always
used. Random permutation of G is chosen at the beginning of the simulation. In
the random independent method one cell is chosen at random for updating
at each time step. In the overall simulation, each cell should thus be updated
approximately the same amount of times. However, over shorter time periods a
given cell may be updated significantly more often. To achieve uniform selection,
the algorithm thus depends heavily on the size of the sequence of the random
number generator implementation. The Mersenne Twister algorithm has been
used in this case, to reduce bias [17]. Finally, the fixed cyclic sequential algo-
rithm was used in two forms: in the first one, cells of GG are visited in sequential
order of their coordinates (first width, then depth, then height in 3D). In the
second form, cells are sorted based on their state (A), so that polymers of certain
type are given simulation priority over polymers of other types (outer coating,
then the inner coating, then the core). The order of cell simulation within the
same polymer type is sorted by its coordinates.

2.3 Equivalence of Sequential and Parallel Implementations

In a concrete, model execution context, the mechanisms presented above only
apply as long as the simulation is sequential. Once the algorithm has to scale
up to be applicable to large data sets, the inclusion of parallelisation will have
fundamental impact on the update logic.

It can be shown that in our case synchronous matrix updates are more suit-
able to parallelisation, as the effect of parallel updates on the resulting state
should be equivalent. Consider a parallel version (F),) of the fundamental rule
set given in Eq. 3:

n n

Fp={f(z1,...,2n) : (| JAWU (), t) = | J AU (), t+1) |21, ... 20 € G} (4)

=1 i=1

Essentially, parallelising the update mechanism by splitting the CA space into
disjoint domains, each having a set of boundary cells, introduces a simultaneous
update of n cells at a time, where n represents the degree of parallelisation. The
exact selection of cells z1,...,z, depends on the particular parallel algorithm
being used. In the synchronous case, the state of a neighbourhood of cells U(z)
at moment ¢ only depends on the same state for the previous moment ¢ — 1,
and not on any currently updated state of any of the other neighbourhoods.
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Therefore, for synchronous updates, it holds that Fs < Fp, which is in line
with [18].

For asynchronous updates, the equivalence of sequential and parallel imple-
mentation breaks down. As the parallel version of the rule set presents a com-
position of functions applied simultaneously, the order of their application can
result in a different overall state of the matrix. This is always true if any of the
chosen neighbourhoods U(z;) overlap.

Therefore, in the case of random order and random cyclic updates, we expect
the parallelisation to always result in slightly different model output. The same
holds for different variations of fized cyclic rules, where the idea of the underlying
algorithm essentially breaks down. The only exception to this rule is the random
independent order of updates, which might produce equivalent results, but only
if, in each individual iteration, cells z; are chosen in each parallel domain so that
their neighbourhoods U(x;) are non-overlapping.

From an implementation point of view, when implementing parallelisation of
pharmaceutical models using some of the industry standard parallel APIs, such
as Message Passing Interface (MPI), synchronous updates are preferable from
the execution speed point of view, as simulations have a practical wall-time limit
of 24h, the amount of time it would take to run a single in vitro experiment.
Synchronous updates are extremely efficient in terms of execution speed espe-
cially as they can utilise two-sided communication using MPI to send and receive
primitives. Asynchronous parallelisation schemes have to utilise one-sided com-
munication primitives such as MPI “put” and “get”, utilising the remote mem-
ory access mechanism, which, although slower, allows for the cell state to be
asked for or provided on demand, without the need to wait on some eventual
update [19].

Finally, it is important to note here that according to [20], for relatively
slow changing stochastic CA models, the expected variance in outputs between
synchronous and asynchronous update methods would be small. This results
from the fact that large-scale, low-probability models do not have too many cell
state updates in each iteration, which in turn limits the number of cases where
overlapping neighbourhoods are updated.

3 CA Model for Coated Drug Formulations

Table 1 outlines the main CA rules used in the resulting model for each of the
simulated processes. Following the notation from Sect. 2.2, each of the transition
functions is applied to an alphabet of CA states:

A ={Pcoar,Pcore, PWcoar, PWcorEe, B, D} (5)

where Pooar, PWeoar, Pcorg and PWeoogrg denote the coating layers and
core polymers, and their wetted state, respectively. B represents buffer cells and
D drug molecules. The rules affecting each cell type can be described using a
formal notation:
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Table 1. Cell types and rules of behaviour for the examined model

Cell type Behaviour description

Buffer (B) Acts as a perfect sink for drug dissolution; Rules:
diffusion; dissolution.

Coating polymer (Pcoar) Protective coating layer. Upon water penetration

erodes into (PWcoar); Rules: erosion; Initial state:
assigned random lifetime using Erlang distribution.

Core polymer (PcorE) Binds drug in the solid phase. Upon water penetra-
tion erodes into (PWcore); Rules: erosion.

Wet coating polymer (PWcoar) Coating layer with some water penetration through
the polymeric chains, allowing drug to diffuse.
Applicable rules: diffusion.

Wet core polymer (PWcore)  Result of core erosion allowing drug diffusion
through relaxed chains; Rules: erosion; diffusion;
swelling.

Drug packet (D) Agent, initially dispersed in core polymer cells.
Each cell can hold a maximum (saturation) amount
of drug “packets”. Initial distribution of packets
throughout the sphere is determined using MC
methods.

e Erosion: Polymer lifetime of a given cell z (I(z)) decreases linearly with
time according to the following function: fe(x) : {l(z) — l(z) —t|Vx €
{Pcoar, PWcoar, Pcore, PWcorr}}

e Diffusion: The amount of drug present in cell z, (d(z,)) partially
transitions to a neighbouring cell x;, with probability paifs: faiff(€a, xs) :
{d(zq,2) 25 d(24) — Ad, d(zp) + Ad |V, € {D}, 23 € U(za)}

e Swelling: The amount of polymer present in cell is distributed in a similar
fashion, using probability ps: fs(za, ) : {1(za,z) 2= 1(z4) — AL l(x) +
Al|Vz, € {PWcorg}, v € U(xa), 7y € {Pcoar, Pcore, B}}

e Dissolution: Finally, the process of partial or total drug dissolution is
described as the reduction in drug molecule count of a given cell once it

transitions to solvent state: fuiss(z) : {d(z) 2% d(z) —n|Vz € {B},n < d(x)}

Multiple rule combinations can be superimposed (e.g. f(z) = fe(faifs
(fs(x)))) to fully define a cell behaviour during a single iteration if the given
cell state satisfies all the alphabet preconditions of the rules given in Eq. 5.

4 Experimental Results

For each of the described update mechanisms, simulations investigated the
following:

e The shape of the release curve during a 24h period (a characteristic of GI
tract transition time for the drug);
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Fig. 1. 24 h simulation period for different update methods. Left - Drug release curves
(blue - release fraction for appropriate update mechanism, gray - synchronous refer-
ence); Right - dissolution fronts changes over time (green swelling front, blue - erosion
front, black gel layer thickness) (Color figure online)
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e The radii of two main reaction fronts: the swelling front, (where the polymer
moves from being in a static to dynamic state), and the erosion front (where
polymer starts dissolving). These are the best indicators of the spatial scope
of the underlying phenomena, which cannot be observed directly from release
data alone;

e The device composite structure changes during characteristic stages of the
dissolution, through visualisation of details.
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Fig. 2. Left- modelled device schematics; Right - An example experimental vs. sim-

ulated results for the case of synchronous updates (experimental data provided by
Sigmoid Pharma Ltd) (Color figure online)

In Fig. 1 we show the results for synchronous updates (used as a basis for rel-
ative comparison with all subsequent ACA methods). The presented data is
considered stable, as variations between different runs of the same parameter
set were negligible. Comparing with random order updates, (Fig.1b), we find a
good match, with negligible release curve difference (indicating that the methods
are effectively interchangeable e.g. where synchronous update is deemed more
appropriate (for specified structure for example [21])). By comparing the curves
analytically using the fo similarity factor [22], we obtain the results ranging from
50.93 (10 % fit) for random independent to 77.83 (3 % fit) for random order type
of updates. However, random order, random cyclic and fixed cyclic independent
have very similar fy values (3 %4 %) fit so looking at the release curves alone
is not enough to establish a clear advantage of one over another.

Figure1 shows possible alternatives to the asynchronous random order
method. It can be seen that random independent selection (Fig.1d) produces
release curves, which are significantly shifted with respect to those expected,
although the radii behaviour is similar, in the sense that polymer transitions
occur at the same rate. The features which give rise to this discrepancy can
be observed in the model visualisations, where large drug clusters (black dia-
monds) occur as a consequence of some cells being updated more often than
others (Fig.3d). Random cyclic updating, on the other hand, produces release
curves which are qualitatively similar to those expected, (Figs.1(cl), (c2) and
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3(c)), although the radii decrease dynamics are much slower. Finally, Figs. 1(el),
(e2) and 3(e), show results obtained using sequential matrix sweeps. This app-
roach is not recommended due to the significant bias, which can be observed in
the visualisation, leading to highly unrealistic radii dynamics. As expected, since
the stochastic model is both slowly changing, with usual probability values used
are much smaller than 1, and highly symmetrical, due to the spherical device
geometry, the results obtained do not show highly anomalous results as would
be expected in general CA to ACA transition [23], in line with theorems pre-
sented in [20] relating to equivalences between slow changing synchronous and
asynchronous update processes in CA models.

(a)

(b)

(c)

(d)

(e)

ojojojolo
ojoljojolo

Fig. 3. Model visualisation during 10, 30, 150, 400 and 700 min interval, respectively:
(a) synchronous; (b) random order; (c¢) random cyclic; (d) random independent; (e)
fixed cyclic sequential. (Color figure online)

The validity of the synchronous updates when compared against experimental
data is shown in Fig. 2, with obtained similarity factor showing a match within
the standard variability range (<6 %).

At the end, we examine the overall performance in terms of simulation
length using different ACA mechanisms in thread-level parallelisation context.
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Fig. 4. Comparison of parallel and total simulation times for different synchronous and
asynchronous update mechanisms. Left - comparison of different ACA update methods
using thread-level parallelism. Right - comparison of synchronous update mechanism
for thread-level (blue) vs. process-level (red) (Color figure online)

As expected, sequential algorithms were the fastest, as these could utilise the
CPU memory cache better. The performance is closely followed by random cyclic
variants, which might make an optimal choice for the scenario where the best
simulation performance is needed, as opposed to state update realism, consider-
ing the accuracy of model outputs presented earlier. The worst performing are
the random order algorithms which are not able to leverage the processor cache
due to constantly changing order of memory access. However, these offer the
best simulation realism and precision when compared to the synchronous vari-
ant, so the pros and cons of each should be weighed when making the decision.
Figure 4 shows the performance profile for synchronous updates when switching
from thread-level to process-level parallelisation model [21]. Although synchro-
nous updates do not perform on the same level as asynchrounous ones, they
do not have a parallelisation limit, and thus, ultimately, can be scaled to any
number of nodes allowed by the model size.

5 Conclusions and Future Work

We have presented an overview of methodological considerations, important to
modelling drug delivery systems using CA and ACA, and have analysed advan-
tages and disadvantages of each update method. While some flexibility is possi-
ble in choosing between asynchronous and synchronous methods for approximate
solutions in this context, this is governed by structural requirements. Our find-
ings show that one of the most adequate solutions is random order asynchronous.
In this regard, model visualisation provides valuable additional insight on struc-
tural behaviour and dissolution mechanisms, which is not readily apparent from
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working with standard release curve data alone, or which are intractable to sup-
plementary experiment. The findings are useful for future modelling scenarios
where it may be necessary to switch from one update mechanism to the other,
both in terms of large-scale optimisation, but also in response to the need for
describing component interactions in tailored solutions for individualised treat-
ment. The CA pharmaceutical models presented here are a step in that direction.
Conclusions drawn in this paper can also be applied in general to any slow chain-
ing CA system, such as those used in social behaviour modelling for example
(especially the performance part).
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