Abstract
One of the key unresolved issues of image processing is the lack of methods for searching images similar to the reference image. This paper focuses on objects that there are in images and presents a method to compare the objects and search for images that contain objects belonging to the same classes. Taking advantage of the fact that local keypoints of images constitute a very good basis for further processing images, we use them for objects comparison. More precisely, the comparison of images is based on histograms, that are generated on the basis of the keypoints of objects contained in images. We present results of experiments which have been conducted for various classes of objects and histograms generated using the proposed method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Achanta, R., Süsstrunk, S.: Saliency detection for content-aware image resizing. In: IEEE International Conference on Image Processing, pp. 1005–1008 (2009)
Akgül, C.B., Rubin, D.L., Napel, S., Beaulieu, C.F., Greenspan, H., Acar, B.: Content-based image retrieval in radiology: current status and future directions. J. Digit. Imaging 2, 208–222 (2011)
Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-Up Robust Features (SURF). Int. J. Comput. Vis. Image Underst. (CVIU) 110(3), 346–359 (2008)
Bazarganigilani, M.: Optimized image feature selection using pairwise classifiers. J. Artif. Intell. Soft Comput. Res. 1(2), 147–153 (2011)
Chang, Y., Wang, Y., Chen, C., Ricanek, K.: Improved image-based automatic gender classification by feature selection. J. Artif. Intell. Soft Comput. Res. 1(3), 241–253 (2011)
Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Comm. ACM 24, 381–395 (1981)
Górecki P., Artiemjew P., Drozda P., Sopyła K.: Categorization of similar objects using bag of visual words and support vector machines. In: Proceedings of 4th International Conference on Agents and Artificial Intelligence, ICAART’12, pp. 231–236 (2012)
Kisku, D.R., Rattani, A., Grosso, E., Tistarelli, M.: Face identification by SIFT-based complete graph topology. In: IEEE Workshop on Automatic Identification Advanced Technologies 2007, pp. 63–68 (2007)
Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2(60), 91–110 (2004)
Rygał, J., Najgebauer, P., Romanowski, J., Scherer, R.: Extraction of objects from images using density of edges as basis for GrabCut algorithm. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS, vol. 7894, pp. 613–623. Springer, Heidelberg (2013)
Shubhangi, D.C., Raghavendra, S., Chinchansoor, P., Hiremath, S.: Edge detection of femur bones in X-ray images - a comparative study of edge detectors. Int. J. Comput. Appl. 42(2), 13–16 (2012)
Tek, F.B., Dempster, A.G., Kale, I.: Malaria parasite detection in peripheral blood images. In: British Machine Vision Conference (2006)
Visual Object Classes Challenge 2012. http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2012/
Whitehill, J., Littlewort, G., Fasel, I., Bartlett, M., Movellan, J.: Toward practical smile detection. IEEE Trans. Pattern Anal. Mach. Intell. 31(11), 2106–2111 (2009)
Zalasiński, M., Łapa, K., Cpałka, K.: New algorithm for evolutionary selection of the dynamic signature global features. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS, vol. 7895, pp. 113–121. Springer, Heidelberg (2013)
Zalasiński, M., Cpałka, K.: Novel algorithm for the on-line signature verification using selected discretization points groups. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS, vol. 7894, pp. 493–502. Springer, Heidelberg (2013)
Acknowledgments
The project was funded by the National Center for Science under decision number DEC-2011/01/D/ST6/06957.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nowak, T., Gabryel, M., Korytkowski, M., Scherer, R. (2014). Comparing Images Based on Histograms of Local Interest Points. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2013. Lecture Notes in Computer Science(), vol 8384. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55224-3_40
Download citation
DOI: https://doi.org/10.1007/978-3-642-55224-3_40
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-55223-6
Online ISBN: 978-3-642-55224-3
eBook Packages: Computer ScienceComputer Science (R0)