Skip to main content

Performance and Energy Analysis of the Iterative Solution of Sparse Linear Systems on Multicore and Manycore Architectures

  • Conference paper
  • First Online:
Parallel Processing and Applied Mathematics (PPAM 2013)

Abstract

In this paper we investigate the performance-energy balance of a variety of concurrent architectures, from general-purpose and digital signal multicore systems to graphics processors (GPUs), representative of current technology. This analysis employs the conjugate gradient method, an important algorithm for the iterative solution of linear systems that is basically composed of the sparse matrix-vector product and other (minor) vector kernels. To allow a fair comparison, we leverage simple implementations of the numerical methods and underlying kernels, and rely only on those optimizations applied by the target compiler.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.netlib.org

  2. 2.

    http://www.cise.ufl.edu/research/sparse/matrices.

References

  1. CRESTA: collaborative research into Exascale systemware, tools and applications. http://cresta-project.eu

  2. The Mont Blanc project. http://montblanc-project.eu

  3. Anzt, H., Heuveline, V., Aliaga, J., Castillo, M., Fernández, J., Mayo, R., Quintana-Ortí, E.S.: Analysis and optimization of power consumption in the iterative solution of sparse linear systems on multi-core and many-core platforms. In: Green Computing Conference and Workshops (IGCC), pp. 1–6 (2011)

    Google Scholar 

  4. Asanovic, K., et al.: The landscape of parallel computing research: a view from Berkeley. Technical Report UCB/EECS-2006-183, University of California at Berkeley, Electrical Engineering and Computer Sciences (2006)

    Google Scholar 

  5. Ashby, S., et al.: The opportunities and challenges of Exascale computing. Summary Report of the Advanced Scientific Computing Advisory Committee (ASCAC) Subcommittee, November 2010

    Google Scholar 

  6. Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., der Vorst, H.V.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd edn. SIAM, Philadelphia (1994)

    Book  Google Scholar 

  7. Bekas, C., Curioni, A.: A new energy aware performance metric. Comput. Sci. Res. Dev. 25, 187–195 (2010). doi:10.1007/s00450-010-0119-z

    Article  Google Scholar 

  8. Bell, N., Garland, M.: Efficient sparse matrix-vector multiplication on CUDA. NVIDIA Technical Report NVR-2008-004, NVIDIA Corporation, December 2008

    Google Scholar 

  9. Bergman, K., et al.: Exascale computing study: Technology challenges in achieving exascale systems. DARPA IPTO ExaScale Computing Study (2008)

    Google Scholar 

  10. Buluç, A., Williams, S., Oliker, L., Demmel, J.: Reduced-bandwidth multithreaded algorithms for sparse matrix-vector multiplication. In Proceedings of the IPDPS,  pp. 721–733 (2011)

    Google Scholar 

  11. Langville, A., Meyer, C.: Google’s PageRank and Beyond: The Science of Search Engine Rankings. Princeton University Press, Princeton (2009)

    Google Scholar 

  12. Saad, Y.: Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied Mathematics, Philadelphia (2003)

    Book  MATH  Google Scholar 

  13. Vázquez, F., Fernández, J.J., Garzón, E.M.: A new approach for sparse matrix vector product on nvidia gpus. Concurrency Comput. Pract. Experience 23(8), 815–826 (2011)

    Article  Google Scholar 

  14. Williams, S., Bell, N., Choi, J., Garland, M., Oliker, L., Vuduc, R.: Sparse matrix vector multiplication on multicore and accelerator systems. In: Kurzak, J., Bader, D.A., Dongarra, J. (eds.) Scientific Computing with Multicore Processors and Accelerators. CRC Press, Boca Raton (2010)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the CICYT project TIN2011-23283 and FEDER, and by EU FET grant “EXA2GREEN” 318793.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hartwig Anzt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aliaga, J.I. et al. (2014). Performance and Energy Analysis of the Iterative Solution of Sparse Linear Systems on Multicore and Manycore Architectures. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2013. Lecture Notes in Computer Science(), vol 8384. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55224-3_72

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55224-3_72

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-55223-6

  • Online ISBN: 978-3-642-55224-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics