Abstract
In this paper we investigate the performance-energy balance of a variety of concurrent architectures, from general-purpose and digital signal multicore systems to graphics processors (GPUs), representative of current technology. This analysis employs the conjugate gradient method, an important algorithm for the iterative solution of linear systems that is basically composed of the sparse matrix-vector product and other (minor) vector kernels. To allow a fair comparison, we leverage simple implementations of the numerical methods and underlying kernels, and rely only on those optimizations applied by the target compiler.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
CRESTA: collaborative research into Exascale systemware, tools and applications. http://cresta-project.eu
The Mont Blanc project. http://montblanc-project.eu
Anzt, H., Heuveline, V., Aliaga, J., Castillo, M., Fernández, J., Mayo, R., Quintana-Ortí, E.S.: Analysis and optimization of power consumption in the iterative solution of sparse linear systems on multi-core and many-core platforms. In: Green Computing Conference and Workshops (IGCC), pp. 1–6 (2011)
Asanovic, K., et al.: The landscape of parallel computing research: a view from Berkeley. Technical Report UCB/EECS-2006-183, University of California at Berkeley, Electrical Engineering and Computer Sciences (2006)
Ashby, S., et al.: The opportunities and challenges of Exascale computing. Summary Report of the Advanced Scientific Computing Advisory Committee (ASCAC) Subcommittee, November 2010
Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., der Vorst, H.V.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd edn. SIAM, Philadelphia (1994)
Bekas, C., Curioni, A.: A new energy aware performance metric. Comput. Sci. Res. Dev. 25, 187–195 (2010). doi:10.1007/s00450-010-0119-z
Bell, N., Garland, M.: Efficient sparse matrix-vector multiplication on CUDA. NVIDIA Technical Report NVR-2008-004, NVIDIA Corporation, December 2008
Bergman, K., et al.: Exascale computing study: Technology challenges in achieving exascale systems. DARPA IPTO ExaScale Computing Study (2008)
Buluç, A., Williams, S., Oliker, L., Demmel, J.: Reduced-bandwidth multithreaded algorithms for sparse matrix-vector multiplication. In Proceedings of the IPDPS, pp. 721–733 (2011)
Langville, A., Meyer, C.: Google’s PageRank and Beyond: The Science of Search Engine Rankings. Princeton University Press, Princeton (2009)
Saad, Y.: Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied Mathematics, Philadelphia (2003)
Vázquez, F., Fernández, J.J., Garzón, E.M.: A new approach for sparse matrix vector product on nvidia gpus. Concurrency Comput. Pract. Experience 23(8), 815–826 (2011)
Williams, S., Bell, N., Choi, J., Garland, M., Oliker, L., Vuduc, R.: Sparse matrix vector multiplication on multicore and accelerator systems. In: Kurzak, J., Bader, D.A., Dongarra, J. (eds.) Scientific Computing with Multicore Processors and Accelerators. CRC Press, Boca Raton (2010)
Acknowledgements
This work was supported by the CICYT project TIN2011-23283 and FEDER, and by EU FET grant “EXA2GREEN” 318793.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Aliaga, J.I. et al. (2014). Performance and Energy Analysis of the Iterative Solution of Sparse Linear Systems on Multicore and Manycore Architectures. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2013. Lecture Notes in Computer Science(), vol 8384. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55224-3_72
Download citation
DOI: https://doi.org/10.1007/978-3-642-55224-3_72
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-55223-6
Online ISBN: 978-3-642-55224-3
eBook Packages: Computer ScienceComputer Science (R0)